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[bookmark: _Toc500856288]Executive Summary
[bookmark: _Toc175381965]This document, “REST API Design Guidelines” provides information for the development of TM Forum APIs using REST. It provides recommendations and guidelines for the implementation of Entity CRUD operations and Task operations.

It also provides information on filtering and attribute selection. Finally, it does provide information on supporting notification management in REST based systems.

The uniform contract establishes a set of methods that are expected to be reused by services within a given collection or inventory.

[bookmark: _Toc500856289]Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
[bookmark: _Toc500856290]General 
[bookmark: _Toc500856291]API Resource Archetypes
The following section describes the resource archetypes supported by the TMF REST APIs

A REST API is composed of 3 distinct resource archetypes and should align each resource to just one of these:
1. Collection Resource – server managed collection of resources. In the TMF REST API Design Patterns collections are anonymous. A resource with no identifier represents the resource collection (matching the resource type). Example: troubleTicket, productOrder
2. Managed Resource – e.g. a database record or an object instance–. Its representation includes: fields with values and links to related resources. Can have child resources, of different resource types.  Client can create, query, update and delete resources. Example: trouble Ticket, productOrder
3. Task Resource – resources that are executable functions – with associated input and output parameters. Necessary where the required action cannot be mapped to standard CRUD methods.  Tasks play the role of Controllers in Rails. E.g. ProductOfferingQualification, ServiceQualification
[bookmark: _Toc500856292]REST Levels
All APIs must implement Level 2 of the Richardson Maturity Model http://www.crummy.com/writing/speaking/2008-QCon/act3.html 
The Level 3 is not mandatory and not specified in this part of the Design Pattern Guideline. Level 3 issues are addressed in the REST Guidelines Part 3 sections as they relate to workflow oriented patterns.
[image: ]

[bookmark: _Toc500856293]REST API SPECIFICATION INFORMATION
For each REST API specification, the following information MUST be included:
· Purpose of the API.
· URL of resources and API including version number.
· HTTP verbs supported.
· Representations supported: JSON ( XML is optional)
· Response schema (and where PUT, POST, PATCH are supported – request schema).
· Links supported (Optional in L2 APIs)
· Response status codes supported.
The API MUST be described using Open API Specification (http://swagger.io/specification/)

[bookmark: _Toc500856294]API implementation technology
APIs are not technology implementation dependent.
REST APIs embrace all aspects of the Hypertext Transfer Protocol, version 1.1 (HTTP/1.1) including its request methods, response codes, and message headers.

[bookmark: _Toc500856295]HTTP HEADERS
The following describe the header protocol elements that MUST be used by the TMF REST APIs.
[bookmark: _Toc500856296]GENERAL HTTP HEADERS
· Cache-Control, Expires, and Date in response headers SHOULD be used when caching is required.  
	

	HTTP/1.1 200 OK
Content-Type: application/json
Cache-control: max-age=60, must-revalidate




· Cache-Control and Expires response headers MAY be used to discourage caching. If a response must not be cached, Cache-Control can be added with the value no-cache and no-store.
· Caching SHOULD be encouraged. The no-cache directive will prevent any cache from serving cached responses.  This SHOULD not be used unless absolutely necessary.
· Expiration caching headers SHOULD be used with 200 (“OK”) responses to GET and HEAD requests.
· Expiration caching headers MAY be used with 3xx and 4xx responses - this helps reduce the amount of redirecting and error-triggering load on a REST API.

[bookmark: _Toc500856297]REQUEST AND RESPONSE HTTP HEADERS – CLIENT SIDE
The negotiation of the media type required by the client and provided by the server requires a number of headers in both the request and the response. 

· The client MAY include ANY HTTP Header as specified in [RFC2616].
· The client MUST expect any HTTP header as specified in [RFC2616].

The media type is the form of the response payload that the client would like to receive; this is specified using the standard HTTP header: Accept

· The client MUST use the Accept HTTP header to specify the media type.
· The Accept HTTP header MUST have a value matching [RFC2616].
· The client MUST support “application/json” by default.

If a media type is specified that is not supported by the server then the response       must be returned using the default, application/json, i.e. as if no media type was specified. 

· The client MAY specify the locale of the response in the request header.
· The client MUST use the Accept-Language HTTP header to specify the locale. 
· The Accept-Language http header MUST have a value matching the template: 
· Locale: ISO-639, ("_", ISO3166-Alpha2)?
· The client MUST expect  “en_GB” by default.
The Accept-Language header uses the [ISO639] language code and [ISO3166] country code standards separated by an underscore “_”, with the second half of the format being optional. If a language is specified that is not supported by the server then the response payload must be returned as “en_GB”.
[bookmark: _Toc500856298]REQUEST AND RESPONSE HTTP HEADERS – SERVER SIDE
As part of the content negotiation, just as the client can request particular behavior from the server, the server needs to respond back saying; “this is what you’re getting”. 

· The server MAY include any HTTP header as specified in [RFC2616]
· The server MUST expect any HTTP header as specified in [RFC2616].

· The server SHOULD specify the media type of the response in the response header
· The server MUST use the Content-Type HTTP header to specify media type
· The Content–Type HTTP header MUST have a value matching [RFC2616].
· The server MUST support “application/json” by default. 

The above rules work in the same way as the Accept; “application/json” is supported as the default media type of the server. This is returned either when requested or when no Accept header is present. The server SHOULD provide this header back to the client for the sake of clarity and so that the client does not have to “detect” the actual media type of the response. However, it is not required and the client SHOULD assume that either the requested media type or the default is being returned.  

· The server SHOULD specify the Content-Length HTTP header. Client can thus know whether it has read the correct number of bytes from the connection and can make a HEAD request to find out how large the entitiy-body is, without downloading it.
· The server SHOULD use Last-Modified HTTP header in the responses to specify the time at which the resources where created.
· The server SHOULD use ETag in responses. The entity tag may be any string value, so long as it changes along with the resource’s representation.
· The server MUST use Location HTTP header to specify the URI of a newly created resource and may be used to direct clients to the operational status of an asynchronous controller resource. This is the preferred method to implement asynchronous behavior.

The following specifies the locale within the response; this matches the Accept-Language HTTP header in the request message.

· The server MAY specify the locale of the response in the response header.
· The server MUST use the Content-Language HTTP header to specify the locale. 
· The Content-Language HTTP header MUST have a value matching the template:
·  Locale: ISO-639, ("_", ISO3166-Alpha2)?
· The server MUST support “en_GB” by default.
· The supported locales MUST be documented.
· The server SHOULD specify Content-Length HTTP header.
e.g.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Language: en_GB
Content-Length: 1024
ETag: “x234dff”
[bookmark: _Toc500856299]CUSTOM HEADER
· The server SHOULD return the HTTP header “X-Total-Count” in a response to a Get List resource creation request.
The HTTP header must specify the total number of matching resources to the Get, for example:

	[Request]
GET /troubleTicketManagement/troubleTicket?count=0&limit=20
…..
[Response]
Content-Type: application/json
X-Total-Count: 200
…





· The server SHOULD specify a rate limit. Rate Limiting of an API can defined on a per-user basis and per application basis. If an operation allows X requests per rate limit window, then it allows the client to make X requests per window.

· The server SHOULD return a 429 Too Many Requests http response when this limit is exceeded.

· The server SHOULD return the following HTTP headers:
X-Rate-Limit-Limit: The # of requests allowed in the current period
X-Rate-Limit-Remaining: The #of requests remaining in the current period
X-Rate-Limit-Reset: The # of seconds left in the current period.



[bookmark: _Toc500856300]Domain and URI Naming Standards
Resources represents managed entities acted upon by the REST API. Resource identifiers represent the actual resources that a service exposes. A resource can be a trouble Ticket, a Logical Port, an Order, a Task etc... 
A resource identifier is like a unique ID assigned to one or more service resources (also known as a key in OSS/J and entity identifier in TIP). The Resource Identifiers recommendation standardizes the syntax used to represent them. The most common syntax used to express resource identifiers is the Web’s Uniform Resource Identifier (URI) syntax.
[bookmark: _Toc500856301]Managed Entity Model
Resources represent managed entities. Resources are acted upon by the REST API using the Uniform Contract Verbs (POST, GET, PUT, DELETE, PATCH, etc.…). Operations on Resources affect the state of the corresponding managed entities.
There is a direct mapping between the managed entities and the corresponding Resources in the REST model.
The mapping between the managed entity types and the corresponding Resource model MUST be included in the API specification.
[bookmark: _Toc500856302]Resource Model and Naming
A resource identifier is like a unique ID assigned to one or more service resources (also known as a key in OSS/J and entity identifier in TIP).
The URI path may convey the REST API’s resource model, with each forward slash separated path segment corresponding to a unique resource within the model’s hierarchy.
The URI of a resource also be represented by an ID which contains the sequence of RDN without having the RDNs to be necessarily encoded as individual resources with an URI.
Characters that require encoding MUST NOT be used in the URI.
Individual resources MUST have a unique identifier field called id.
If the Id is a composite key then it should be split into the following elements:  key = {part}-{part}*. 
For example, if the key is a combination of managementSystem and name then the id would be represented as:
                id = {managementSystem}-{name}
The structure of a Resource Path URI is given by the following expression:
	

	{resourcePath} = {resourceName} [ ( / {resourceID*} [ / {resourcePath} or {taskResource} ] ) Or ( /{taskResource} ) ] 



For example, in our sample Trouble Ticket Management application:
	{resourcePath} = ticket/{ticketID}



          
Resource URIs SHOULD be formed according to the following base pattern:

	{apiRoot} /{resourcePath}


 
	 apiRoot points to the root path of collection of resources.
[bookmark: _Toc500856303]Resource ID and href
Every Resource have two mandatory attributes:

· id: A unique identifier in the context of the application collection “id=42”
· href: The full URI of the resource as per Location header 
“href=https://api/troubleTicket/42”

All API’s SHOULD use HTTP/SSL, “HTTPS” as the scheme. 
The ID MUST be canonicalized and MUST not be a business identifier.
The ID must be unique and immutable within the collection.
[bookmark: _Toc500856304]Resource Naming Convention
Names in URI (tasks, individual resources, etc.) MUST be camel case or lower case.
e.g. /account/billSummary/billDetail /account/billSummary/billdetail
Each resource name must be a full name, abbreviations and acronyms MUST NOT be used.
e.g. resourceSpecification not ResourseSpec
The resource URI MUST NOT use meaningless words.
e.g. “Management”, “Maintenance”, “Provision”
The API Resource name MUST be derived from the TMF Information Framework.
Each resource name MUST be a noun, except tasks that MUST be a verb.
e.g. Service Problem, Trouble Ticket, Service Order as a resource
e.g. ,close, cancel, group, send, check as a task
The resource name MUST NOT expose technical or implementation details.
[bookmark: _Toc500856305]Resource fields Naming Convention
       Fields names MUST be camel case or lower case.
e.g. orderDate, requestedCompletionDate
[bookmark: _Toc500856306]Identifier syntax and uniform contract verbs
URI names MUST NOT contain the names of HTTP verbs (task resources should be used if needed for clarity).
[bookmark: _Toc500856307]Resource collection naming
Collection names MUST not use a Collection postfix. Collections are implicit when the resource name is used.
For example, API/ticket represents the Ticket Collection and GET API/ticket retrieves all the items from the Ticket Collection (i.e. all the resources of type Ticket contained within the application).


[bookmark: _Toc500856308]Uniform Contract Methods and Media Types

HTTP provides us with a set of generic methods, such as GET, PUT, PATCH, POST, DELETE, HEAD and OPTIONS, that are pre-defined in the HTTP specification. The complete protocol interactions include a set of response codes, plus syntax for expressing various parameters that can be encoded in HTTP messages.
The REST uniform contract is based on three fundamental elements:
· resource identifier syntax – How can we express where the data is being transferred to or from? 
· methods – What are the protocol mechanisms used to transfer the data? 
· media types – What type of data is being transferred?

The following section describes the guidelines for modeling operations and for specifying what media types to use.

[bookmark: _Toc226707716][bookmark: _Toc500856309]Uniform Contract Operations
All API operations are based on the REST Uniform Contract operations. 
· GET and POST must not be used to tunnel other request methods in the TMF Open API specifications although it is recognized as a practice in an implementation.
The following describe the relationships between the elements of the API and the Uniform Contract. 
 Only legit resource can be acted upon using Uniform operation and not dependent entity.

Operations on Entities are mapped to operations on the corresponding resources.
	Operation on Entities
	Uniform API Operation
	Description

	Query Entities
	GET Resource
	GET must be used to retrieve a representation of a resource.


	Create Entity
	POST Resource
	POST must be used to create a new resource

	Partial Update of an Entity
	PATCH Resource
	PATCH must be used to partially update a resource

	Complete Update of an Entity
	PUT Resource
	PUT CAN be used to completely update a resource identified by its resource URI 

	Remove an Entity
	DELETE Resource
	DELETE must be used to remove a resource

	Execute an Action on an Entity 
	POST on TASK Resource
	POST must be used to execute Task Resources

	Other Request Methods
	POST on TASK Resource
	GET and POST must not be used to tunnel other request methods.



· HEAD must be used to retrieve response headers. HEAD support is always optional.
[bookmark: _Toc500856310]API Media Types
When defining methods for REST services, we can further specify the types of data a given method can process. For example, a GET method may be able to transfer a Trouble Ticket representation in XML or JSON. Each is represented by its own media type.

· REST APIs MUST support the “application/json” media type by default.
· In case of PATCH if application/json is provided then the default rule will be to apply the same rules as for JSON merge.
· In case of JSON Patch [RFC6902] for partial updates “application/json-patch+json” media type MUST be used.
· In case of JSON PATCH Query, “application/json-patch+query” media type MUST be used.
· In case of PATCH as per https://tools.ietf.org/html/rfc7386 “application/merge-patch+json” MUST be used
· The default for resource representation MUST be JSON. 
· An API MUST only use the ACCEPT HEADER and CONTENT-TYPE (POST) to control the representation media types.  Other mechanisms SHOULD not be supported.
[bookmark: _Toc500856311]API RESPONSE STATUS and EXCEPTION CODES
THE REST APIs MUST use the exception and response codes documented at http://www.iana.org/assignments/http-status-codes/http-status-codes.xml.

In particular, the following response codes must be used:

	
	Status
Code
	Rule
	

	
	2xx
	Success

Indicates that the client’s request was accepted successfully.
	

	
	200
	OK - SHOULD be used to indicate nonspecific success. Must not be used to communicate errors in the response


bodyM
	

	
	201
	Created - MUST be used to indicate successful resource creation.
Return message SHOULD contain a resource representation and a
Location header with the created resource’s URI
	

	
	202
	Accepted - MUST be used to indicate successful start of an
asynchronous action
	

	
	204
	No Content - SHOULD be used when the response body is
intentionally empty
	

	
	206
	Partial Content – MUST be used for Partial resource returned in response (with pagination)
	

	
	3xx
	Redirection

Indicates that the client must take some additional action in order to complete their request.
	

	
	301
	Moved Permanently - SHOULD be used to relocate resources
	

	
	302
	Found - SHOULD not be used
	

	
	303
	See Other - SHOULD be used to refer the client to a different URI –
can be used with a Location header containing the URI of a resource that shows the outcome of an asynchronous task.
	

	
	304
	Not Modified - SHOULD be used to preserve bandwidth
	

	
	307
	Temporary Redirect - SHOULD be used to tell clients to resubmit the
request to another URI
	

	
	4xx
	Client Error

This category of error status codes points the finger at clients.
	

	
	400
	Bad Request - MAY be used to indicate nonspecific failure.

The request could not be understood by the server. The client
SHOULD NOT repeat the request without modifications
	

	
	401
	Unauthorized - MUST be used when there is a problem with the

client’s credentials
	

	
	403
	Forbidden - SHOULD be used to forbid access regardless of authorization state. For example, a client may be authorized to
interact with some, but not all of a REST API’s resources. If the client attempts a resource interaction that is outside of its permitted
scope, the REST API should respond with 403.
	

	
	404
	Not Found - MUST be used when a client’s provided URI cannot be
mapped to a resource URI
	

	
	405
	Method Not Allowed - MUST be used when the HTTP method is not
supported
	

	
	406
	No Acceptable - The requested resource is capable of generating only content not acceptable according to the Accept headers sent in the request
	

	
	409
	Conflict -The request could not be completed due to a conflict with the current state of the target resource.
	

	
	410
	Gone - The requested resource is no longer available at the server and no forwarding address is known.
	

	
	411
	  Length required-The server refuses to accept the request without a defined     Content- Length.

	

	
	412
	Precondition Failed - The precondition given in one or more of the request-header fields evaluated to false when it was tested on the server

	

	
	413
	Request Entity Too Large- The server is refusing to process a request because the request entity is larger than the server is willing or able to process
	

	
	414
	Request-URI Too Long- The server is refusing to service the request because the Request-URI is longer than the server is willing to interpret
	

	
	415
	Unsupported Media Type - The request entity has a media type which the server or resource does not support. For example, the client uploads an image as image/svg+xml, but the server requires that images use a different format.
	

	
	422
	Unprocessable Entity - The request was well-formed but was unable to be followed due to semantic errors.
	

	
	429
	Too Many Requests – SHOULD be used to indicate that the client has sent to many requests in a given amount of time (“rate limiting”). 
	

	5
	5xx
	Server Error
This category of error status codes points the finger at servers.
	

	400
	500
	Internal Server Error – a generic error message, given when an unexpected condition was encountered and no more specific message is suitable.
	

	
	501
	Not implemented- the server either does not recognize the request method, or it lacks the ability to fulfil the request. Usually this implies future availability (e.g., a new feature of a web-service API).
	

	503
	503
	Service unavailable - The server is currently unavailable (because it is overloaded or down for maintenance). Generally, this is a temporary state.
	





[bookmark: _Toc500856312]User, Application and Extended Error Codes
The HTTP 4xx or 5xx standard error codes should always be used in the response header. 
An API MAY support user and application specific error codes.
User and Application specific Error Codes MUST be represented in the Error Representation (Body) of the response.
Sub codes are possible (400-2) however they MUST be in the Error Representation (Body)
Error Representation in body of the response MUST have the following structure:

	Property
	Description
	Mandatory

	code 
	Application related code (as defined in the API or from a common list)
	Mandatory

	reason
	Text that explains the reason for error. This can be shown to a client user.
	Mandatory

	message
	Text that provide more details and corrective actions related to the error. This can be shown to a client user.
	Optional

	status
	http error code extension like 400-2
	Optional

	referenceError
	url pointing to documentation describing the error
	Optional

	@type
	The class type of a REST resource.
	Optional

	@schemaLocation
	it provides a link to the schema describing a REST resource.
	Optional


Example:
	400 Bad Request
Content-type:application/json
{
	"code": "ERR001",
	"reason": "Missing mandatory field",
	"message": "Please provide and Authorisation header"
}



The error codes if supported SHOULD be defined in the API specification.
@type and @schemaLocation SHOULD be used for run time extension of the error.

[bookmark: _Toc500856313]Representations
· (Well formed) JSON MUST be the default for resource representation
· XML and other formats may optionally be supported via content negotiation with the client
· Media type selection MUST be signaled with the Accept header. 
· Documents (individual resources) MUST have a unique identifier field called ID.
· All documentation SHOULD link to a schema (JSON schema or W3C XML Schema)
· Additional envelopes must not be created. A REST API must leverage the message “envelope” provided by HTTP.
[bookmark: _Toc500856314]
Common Information Model

When applicable, the data types used to define the information model in API parameters SHOULD follow the Information Framework reference model from TM Forum. In particular:
· Where there are fields defined in the TMF Information Framework for an API resource then the same field names SHOULD be used in the API.
· The mandatory fields from the TMF Information Framework SHOULD be represented in the API resource model.
· The optional fields from the TMF Information Framework MAY be represented in the API resource model.
· If mandatory fields for the API resource are not found in the TMF Information Framework then the fields MAY be added to the TMF Information Framework.
· If optional fields for the API resource are not found in the TMF Information Framework then the fields MAY be added to the TMF Information Framework.







[bookmark: _Toc500856315]Query Resources Patterns

The following section describe the structure and constraints of query operations. 
All examples are relative to the management of TroubleTicket entities having the following JSON representation.
             
	
{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
	                     "href": "https:server:port/CustomerManagement /customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/party Management/party/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/party Management/party /23445",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": "/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": "/CustomerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}



[bookmark: _Toc226707717][bookmark: _Toc500856316]Query single Resource all attributes
GET {apiRoot} /{resourceName}/{resourceID} MUST be used to retrieve the representation of a resource named resourceID.
If the resource exists. the complete resource representation (with all the attributes) must be returned. 
The returned representation must contain a field called « id» and that field be populated with the resourceID.
If the request is successful then the returned code MUST be 200.
If there are no matching resource then a 404 Not Found must be returned.
	HTTP Response Codes - Success
	200 OK

	HTTP Response Codes - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
500 Internal Server Error



The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
                 Retrieving a Single TroubleTicket with an ID of 42:

	REQUEST

	GET /api/troubleTicket/42

	RESPONSE

	200

Content-Type: application/json

{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": "https:server:port/customerManagement/customer/1111",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/2222",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/12345",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": "https:server:port/billingManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}



[bookmark: _Toc226707718][bookmark: _Toc500856317]Querying multiple Resources
The following section describe how to use the GET operation to retrieve multiple resources without specifying id’s.

GET {apiRoot} /{resourceName} must be used to retrieve the representation of all the resource for a resource type corresponding to /{resourceName}
The complete resource representations (with all the attributes) of all the matching entities must be returned. 
The returned representation of each entity must contain a field called « id» and that field be populated with the resourceID.
If the request is successful then the returned code MUST be 200 otherwise, the appropriate error code SHOULD be returned.
	
	HTTP Response Codes - Success
	200 OK

	HTTP Response Codes - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
500 Internal Server Error



The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
Example:

Retrieving all troubleTickets.

	REQUEST

	GET /api/troubleTicket

	RESPONSE

	200

Content-Type: application/json

 [{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/billManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyMangement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/Roger Collins",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
},
 {
	"id": "43",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/43",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2014-07-23T08:16:39.0Z",
	"targetResolutionDate": "2014-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/PartyManagement/individual/1234",
			"role": "Owner"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1236"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5679"
		}
	],
	"note": [{
			"date": "2014-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		}
	]
}
 }




[bookmark: _Toc226707719][bookmark: _Toc500856318]Query partial Resource representation or attribute selection
The following section describes how to select a subset of the attributes of an entity to be present in a returned representation. 

Attribute selection MUST be enabled on all first level attributes but not on inner classes.
Attribute selection MAY optionally be enabled on all attributes and inner classes.

An attribute selector directive called “fields” MUST be used to specify the attributes to be returned as part of a partial representation of a resource.
GET {apiRoot} /{resourceName}/{resourceID}/?fields={attributeName*} MUST be used to retrieve the partial representation of a resource with the attributes named resourceID*.
If the no attribute selector directive is provided then the complete resource representation (with all the attributes) must be returned. 
In order to indicate that no resource properties should be returned the following directive can be used: “fields=none”.
ID and HREF MUST be returned in the resource body representation when fields=none is used.
Fields MAY be used with other Uniform Operations. See chapter 6 for an example where fields can be used with POST operation.
Example:
	REQUEST

	GET /api/troubleTicket?fields=none
Content-Type: application/json






	RESPONSE

	200
Content-Type: application/json


{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42"	
}




If there is a name clash between the attribute name and the name of a resource directly under the parent then /:fields={attributeName*} should be used.
The returned representation must contain a field called « id» and that field be populated with the resourceID.
If the request is successful then the returned code MUST be 200.
The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
Example:

Retrieve the report with an « id » of 42 and populate the representations with the description and status attributes. Note that the id and href attributes are always present.

 
	REQUEST

	GET /api/troubleTicket/42/?fields=description,status

	RESPONSE

	200

Content-Type: application/json

  {
	"id": "42",
	"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
	"description": "Customer complaint over last invoice.",
	"status": "In Progress"
}




[bookmark: _Toc226707720][bookmark: _Toc500856319]Query Resources with attribute filtering
The following section describe how to retrieve resources using an attribute filtering mechanism. The filtering is based on using name value query parameters on entity attributes.

The basic expression is a sequence of attribute assertions being ANDED to formulate a filtering expression:

GET {apiRoot} /{resourceName}?[{attributeName}={attributeValue}&*]

For examples:
· GET/troubleTicket/?status=acknowledged & status=rejected

Note that the above expressions match only for attribute value equality.

Attribute values ORING is supported and is achieved by providing a filtering expression where the same attribute name is duplicated a number of times [{attributeName}={attributeValue}&*] different values.

Alternatively the following expression [{attributeName}={attributeValue},{ attributeValue }*] is also supported. ORING can also be explicit by using “ ; “ many time [{attributeName}={attributeValue};{attributeValue}*]
The “OR” behavior can also be achieved by providing a filtering expression using one of the following expressions.

For example:

·    GET /troubleTicket? status=acknowledged; status=rejected
·    GET /troubleTicket? status = acknowledged,rejected



                 The following operators may be used:
	Operator literal
	Description
	URL Encoded form

	.gt >
	greater than ( > )
Return results where the search criteria field is strictly greater than
	%3E

	.gte >=
	greater than or equal to (>=)
Return results where the search criteria field is equal of greater than
	%3E%3D

	.lt <
	Less than (<)
Return results where the search criteria field is strictly less than
	%3C

	.lte <=
	less than or equal to (<=)
Return results where the search criteria field is equal or less than
	%3C%3D

	regex *=
	Regexp expression 
Note: all regexp special characters must be encoded
	%3D~

	.eq
	Equal to (=)
Returns results where the search criteria fields is equal to
	%3D%3D





Example:
· Using ANDED to describe “017-04-20 >dateTime>2013-04-20” :GET /troubleTicket?dateTime%3E2013-04-20&dateTime%3C2017-04-20 
· Using ORING to describe dateTime<2013-04-20 or dateTime<2017-04-20 :GET /troubleTicket?dateTime%3C2013-04-20;dateTime%3E2017-04-20     
 
                 Complex attribute value type may be filtered using a “.” notation. 

                [{attributeName.attributeName}={attributeValue}&*]

The complete resource representations (with all the attributes) of all the matching entities must be returned. 
The returned representation of each entity must contain a field called « id» and that field be populated with the resourceID.
If the request is successful then the returned code MUST be 200.
The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
Example:

Retrieve all Trouble Tickets with dateTime greater than 2013-04-20 and status acknowledged.

	REQUEST

	GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged	or
GET /api/troubleTicket?dateTime%3E2013-04-20&status=acknowledged

	RESPONSE

	200

Content-Type: application/json
[{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "Acknowledged",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/party/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/3455",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
},
 {
	"id": "43",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/43",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "Acknowledged",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/2222",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/CustomerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}
 }
  




[bookmark: _Toc500856320]Query Resources with attribute filtering and Iterators
To support the return of large collections of resources the GET HTTP method must support pagination. Attribute filtering and iterators may be combined in a single request as per the following example:

	REQUEST

	GET /api/troubleTicket?offset=20&limit=10&status =acknowledged  
	


	
[bookmark: _Toc500856321][bookmark: _Toc226707722]Paging  

If no paging query parameters are specified in the URI then all matching resources SHOULD be returned to the consumer. The server MAY return a partial response with default values for offset and limit.
For query based pagination, the following query parameters MUST be supported:
	Parameter
	Type
	Description

	offset

	integer

	Requested index for start of resources to be provided in response requested by client

	limit

	integer

	Requested number of resources to be provided in response requested by client



The above pagination query parameters support both getting a page in the middle of a resultset and the capability to get the next page.
If the offset query parameter is missing then it must default to zero.

	?limit=20
	Get the first twenty matching resources.

	?offset=0&limit=20
	Get the first twenty matching resources.

	?offset=10&limit=20
	Get the twenty resources starting at the tenth




For query-based pagination, the server MUST return the HTTP header “X-Total-Count” in a response, with the total number of matching resources so that the client can calculate the next page.

The server SHOULD return navigation links as Web Linking HTTP header, to ease the navigation and avoid that client has to construct the related links (first, next, previous, last).

The following HTTP response code MUST be returned by the server:

	Code
	Message
	Description

	200
	OK
	Full resource returned in response (no pagination)

	206
	Partial Content
	Partial resource returned in response (with pagination)




Example:

	REQUEST

	GET api/troubleTicket?offset=20&limit=10
Content-type: application/json


	RESPONSE

	206
Content-Type: application/json
X-Total-Count :50
Link: < https:server:port/troubleTicketManagement/troubleTicket?offset=20&limit=10>; rel="self", 
< https:server:port/troubleTicketManagement/ troubleTicket?offset=0&count=10>; rel="first",
< https:server:port/troubleTicketManagement/troubleTicket?offset=30&limit=10>; rel="next",
< https:server:port/troubleTicketManagement/ troubleTicket?offset=10&limit=10>; rel="prev",
< https:server:port/troubleTicketManagement/ troubleTicket?offset=40&limit=10>; rel="last"
[{
		"id": "20",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/20",
		"status": " acknowledged"
----------------
	},
	{
		"id": "21",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/21",
		"status": "acknowledged"
	  ---------------
	},
------------
	{
		"id": "29",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/29",
		"status": "acknowledged"
-----------
	}
]






The content Range header MAY also be used to control the amount of data returned. This header is present in the request and control the minimum and maximum values returned.
Filtered queries returns collections and the content range header is relative to the entities in the returned collection. 
The following example shows how to use the Range header to iterate a collection of trouble tickets. The example assumes that 50 trouble tickets match a filtering criteria and that the maximum amount of trouble tickets being retrieved by calls is set by default to 10.

Example:


	REQUEST

	GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged	
	

	

RESPONSE

	200

Content-Type: application/json
Content-Range: items 1-10/50

[{
		"id": "41",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/41",
		"status": "In Progress"
	},
	{
		"id": "42",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
		"status": "acknowledged"
	  
	},
	{
		"id": "43",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/43",
		"status": "acknowledged"
	}
]




Retrieving the next elements:

	REQUEST

	GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged
Accept-Range:items	
                 Range:items=11-20	

	RESPONSE

	206

Content-Type: application/json
Content-Range: items 11-20/50

[{
		"id": "41",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/41",
		"status": " acknowledged"
	},
	{
		"id": "42",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
		"status": "acknowledged"
	  
	},
	{
		"id": "43",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/43",
		"status": "acknowledged"
	}
]





[bookmark: _Toc500856322]Query Resources with attribute filtering and attribute selection
Attribute filtering and attribute selection may be combined in a single request as per the following example:

	REQUEST

	GET /api/troubleTicket?fields=description,status&creationDate.gt=2013-04-20&status =acknowledged  
	


[bookmark: _Toc500856323]Sorting 
To support sorting the sort directive is used in HTTP query parameters is used.
If sorting is used then following parameters MUST be supported:
Sort-Query-Parameters : “sort”, “=”, (Sort-Direction), Sort-Field

Sort-Direction : “-“ | “+”
Sort-Field: The field to sort on.

The default direction is Ascending order, the use of the modifier in front of the sort field name, “-“, changes the sort order direction.

	?sort=name
	Sort the resultset on the name.

	?sort=-name
	Sort the resultset on the name in descending order.





Coma separated list of resource attributes can be requested by client:
?sort= [attributeName],…,[atributeName]
Nested resource attributes can be specified,as pattern: 
[parentResource].[childResource].[attributeName]
Sorting order is specified by the left to right order of the fields listed.
Note that the “.sort” format can be used (as for any directive) if there is an ambiguity regarding the semantic of sort within the query parameters.
	REQUEST

	GET /api/troubleTicket?sort=creationDate,statusChangeDate,note.date
	



[bookmark: _Toc500856324]Modify resources patterns
The following section describe the patterns used to modify resources. 
[bookmark: _Toc500856325]Uniform contract operations for modifying resources 
TMF REST API’s MUST only uses PUT and PATCH to modify the attributes of an entity.

The TMF REST Design Guideline is strict about the usage of PUT versus PATCH. 

· PUT should be used when the semantic of the operation is replace all. 
· PUT MUST NOT be used for the partial updates of attributes.
· PATCH MUST be used if a partial update is required.
[bookmark: _Toc226707723][bookmark: _Toc500856326]Replace all attributes of a resource 

A PUT replaces the current object with the provided object. 

If the intent is to update a limited subset of properties of the resource then PATCH MUST be used update an object. 

One approach to using PUT to facilitate a partial “replace” functionality is to first GET the object, modify it in memory, then to PUT the modified object back.

If the request is successful then the returned code MUST be 200.
If the request is asynchronous then the returned code MUST be 202 Accepted.

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
	HTTP Response Codes - Success
	200 OK
204 No Content

	HTTP Response Codes - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error



Full resource representation MUST be included in the response if the request is successful, and error code otherwise with no resource representation.

Example:

Change the status of the trouble ticket with ID= 42 to resolved.
	REQUEST

	PUT /api/troubleTicket/42

{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "Resolved",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/2222",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/bilManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/bilManagement/CustomerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}

	RESPONSE

	200

Content-Type: application/json

{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "Resolved",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/12222",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/bilManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/CustomerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}



Note that using PUT with only the "status": " Resolved ", if and href attributes subset will result in all other attributes being set to null or to empty.
Note that id, href and read-only and non-nullable attributes MUST also be specified explicitly.


	REQUEST

	PUT /api/troubleTicket/42
{
 "id": "42",
"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
  
"status": " Resolved "
}

	RESPONSE

	200

Content-Type: application/json

{
	"id": "42",
	"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
	"status": "Resolved",
	"relatedParty": [],
	"relatedObject": [],
	"note": []
}





[bookmark: _Toc226707724][bookmark: _Toc500856327]Modify Attribute subset of a resource 
PATCH MUST be used to update a limited subset of the attributes of an entity as described in http://tools.ietf.org/html/rfc5789 and https://tools.ietf.org/html/rfc7386

If the request is successful then the returned code MUST be 200.
If the request is asynchronous then the returned code MUST be 202 Accepted.
The exceptions code must use the exception codes from http://www.iana.org/assignments/http-status-codes/http-status-codes.xml as explained in section 4.3. 
	HTTP Response Codes - Success
	200 OK
204 No Content

	HTTP Response Codes - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error



Full representation MUST be included in the response if the request is successful, error code otherwise with no content.

In case of PATCH if application/json is provided then the default rule will be to apply the same rules as for JSON merge.



Example:

Change the status of the Trouble Ticket with ID= 42 to resolved


	REQUEST

	PATCH /api/troubleTicket/5
Content-Type: application/merge-patch+json

{
    “status”: “Resolved”
}

	RESPONSE

	200

Content-Type: Application/json

{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "Resolved",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/23333",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}


	

[bookmark: _Toc500856328]Modify Multi-Valued Attribute 
The modification of list based attributes can be performed using:
PATCH as per https://tools.ietf.org/html/rfc7386 and application/merge-patch+json
JSON PATCH as per  http://tools.ietf.org/html/rfc5789 and application/json-patch+json
JSON PATCH query as per TMF REST Guidelines Part 5 and application/json-patch+query. 

When PATCH is used with Content-Type: application/json the semantic of the operation is the replacement of the whole list with the supplied list.
When JSON PATCH is used the Content-Type MUST be set to Content-Type: application/json-patch+json and the directives for changing, adding, removing array elements follow the directives stated in the JSON PATCH specification.
The HTTP PATCH method is atomic, as per [RFC5789].     
If successful, MUST returns a 200 Ok HTTP response code if there is a representation of the modified resource in the payload or a 202 Accepted response code if the operation is performed asynchronous.
Example: Add a related party entry to the relatedParty array of an individual resource.

	REQUEST

	PATCH partyManagement/individual/11
Content-type: application/json-patch+json
[

	{
		"op": "add",
		"path": "/relatedParty",
		"value": [{
			"role": "Employee",
			"href": "http://serverlocation:port/partyManagement/organization/1",
			"validFor": {
				"startDateTime": "2013-04-19T16:42:23-04:00",
				"endDateTime": ""
			},
			"status": "Active"
		}]
	}

]

	RESPONSE

	200
Content-Type: application/json

{  JSON Resource Representation with ALL Attributes
}



Where: 

· “op” is the action to take. The following operations are supported: Add, Remove, Replace, Copy, Move, Test
· “path” is a pointer/reference to the field to change.
· “value” is the value to use, this is optional depending on the value of “op”

Note, the path notation used in the Patch standard is JSON Pointer.

[bookmark: _Toc500856329]JSON-PATCH extension to manage arrays
JSON Patch Query defines a JSON document structure for expressing a sequence of operations to apply to a JavaScript Object Notation(JSON) document, specifically to manage arrays; it is suitable for use with the HTTP PATCH method.
The "application/json-patch+query" media type is used to identify such patch documents.
JSON Patch Query is a format that extends JSON Patch in order to handle partial updates of elements within an array without previous knowledge of the order in which the impacted elements are located within the array.
A JSON Patch Query document follows the same structure as a JSON Patch [RFC6902] document, which represents an array of objects, each object representing a single operation to be applied to the target JSON document, but the "path" member includes a query parameter to allow identifying uniquely the element within an array that is impacted by the operation.
The following is an example JSON Patch Query document, transferred in an HTTP PATCH request:

	REQUEST

	PATCH partyManagement/individual/11
Content-type: application/json-patch+query 
[
   
     {  
         "op": "remove", 
         "path": "/relatedParty?role="Employee"
      },
     {  
         "op": "replace", 
         "path": "/relatedParty?role="Employee","value": "Owner"
      }
]


	RESPONSE

	200
Content-Type: application/json-patch+query 
{  JSON Resource Representation with ALL Attributes
}



Evaluation of a JSON Patch Query document is performed in the same way as for a JSON Patch document.
Refer to TMF REST API Guidelines Part 5 below for a complete list of examples of the use of JSON Patch Query document for partial update of a resource. 

[bookmark: _Toc500856330]Create Resource Patterns
The following section describe the patterns used to create resources.  

[bookmark: _Toc226707727][bookmark: _Toc500856331]Creating a single Resource
POST must be used to create single resources.

Return message MUST contain a resource representation and a Location header with the created resource’s URI except when fields= none is provided in the request.
Not all the attributes of the entity must be specified but all the attributes of the created entity MUST be populated by default values (could be null).
A successful creation MUST return a 201 Created HTTP code on success. 
A creation operation MUST return a 202 Accepted HTTP response code when the resource creation is asynchronous.
	Response Code List - Success
	201 Created


	Response Code List - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error



If operation is async, a Monitor resources MUST be returned.  Please check section on Monitor pattern for more details.

Example:

Create a trouble ticket 
	REQUEST

	POST /api/troubleTicket
Content-Type: application/json


{
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyMangement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/21333",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}


	RESPONSE

	201

Location: https:server:port/troubleTicletManagement/troubleTicket/42


Content-Type: application/json

{
	"id": "42",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/2333",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}





The resource created is identified by a service generated URI. Alternatively, an ID can be provided. The ID in the resource representation and the URI are related. 
[bookmark: _Toc500856332]Creating Multiple Resources
JSON PATCH with application/json-patch+json MUST be used to create multiple resources. POST can’t be used for that purpose. 

The JSON PATCH operation is relative to the container collection for the entity types to be created. Alternatively, “/path” in the PATCH directive can be used to scope a specific collection. Entities are added to the targeted collection.

Return message MUST contain the resource representation of all the resources created except if fields=none is provided in the request.
When fields=none is used, id and href MUST be specified in the return message.
Not all the attributes of the entity must be specified in the request but all the attributes of the created entity MUST be populated by default values (could be null).
A successful PATCH must return either 200 HTTP code or a 204 No Content 
An update operation MUST return a 202 Accepted response code if the partial update operation is performed asynchronous.
	Response Code List - Success
	200 OK
204 No Content

	Response Code List - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error



Note that the Internet media type for a JSON Patch document is application/json-patch+json.
The HTTP PATCH method is atomic, as per [RFC5789] i.e., all operations MUST be successful otherwise the application of the full PATCH is unsuccessful.


Example:

Create multiple trouble tickets
	REQUEST

	PATCH /api/troubleTicket
                 Content-type: application/json-patch+json
[{
		"op": "add",
		"path": "/",
		"value": {
			"id": "42",
			"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
			"correlationId": "TT53482",
			"description": "Customer complaint over last invoice.",
			"severity": "Urgent",
			"@type": "TroubleTicket",
			"creationDate": "2013-07-23T08:16:39.0Z",
			"targetResolutionDate": "2013-07-30T10:20:01.0Z",
			"status": "In Progress",
			"statusChangeReason": "Waiting for invoicing expert.",
			"statusChangeDate": "2013-07-24T08:55:12.0Z",
			"relatedParty": [{
					"href": " https:server:port/customerManagement/customer/1234",
					"role": "Originator"
				},
				{
					"href": " https:server:port/partyManagement/individual/1234",
					"role": "Owner"
				},
				{
					"href": " https:server:port/partyManagement/individual/2333",
					"role": "Reviser"
				}
			],
			"relatedObject": [{
					"involvement": "Disputed",
					"reference": "/customerBill/1234"
				},
				{
					"involvement": "Adjusted",
					"reference": " https:server:port/billManagement/customerBill/5678"
				}
			],
			"note": [{
					"date": "2013-07-24T09:55:30.0Z",
					"author": "Arthur Evans",
					"text": "Already called the expert"
				},
				{
					"date": "2013-07-25T08:55:12.0Z",
					"author": "Arthur Evans",
					"text": "Informed the originator"
				}
			]
		}
	},

	{
		"op": "add",
		"path": "/",
		"value": {
			"id": "43",
			"href": "https:server:port/troubleTicketManagement/troubleTicket/43",
			"correlationId": "TT53483",
			"description": "Customer complaint over last invoice.",
			"severity": "Urgent",
			"type": "TroubleTicket",
			"creationDate": "2013-07-23T08:16:39.0Z",
			"targetResolutionDate": "2013-07-30T10:20:01.0Z",
			"status": "In Progress",
			"statusChangeReason": "Waiting for invoicing expert.",
			"statusChangeDate": "2013-07-24T08:55:12.0Z",
			"relatedParty": [{
					"href": " https:server:port/customerManagement/customer/1234",
					"role": "Originator"
				},
				{
					"href": " https:server:port/partyManagement/individual/1234",
					"role": "Owner"
				},
				{
					"href": " https:server:port/partyManagement/individual/2344",
					"role": "Reviser"
				}
			],
			"relatedObject": [{
					"involvement": "Disputed",
					"reference": " https:server:port/bilManagement/customerBill/1234"
				},
				{
					"involvement": "Adjusted",
					"reference": " https:server:port/billManagement/customerBill/5678"
				}
			],
			"note": [{
					"date": "2013-07-24T09:55:30.0Z",
					"author": "Arthur Evans",
					"text": "Already called the expert"
				},
				{
					"date": "2013-07-25T08:55:12.0Z",
					"author": "Arthur Evans",
					"text": "Informed the originator"
				}
			]
		}

	}
]
    

	

RESPONSE

	[{
		"id": "42",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/42",
		"correlationId": "TT53482",
		"description": "Customer complaint over last invoice.",
		"severity": "Urgent",
		"@type": "TroubleTicket",
		"creationDate": "2013-07-23T08:16:39.0Z",
		"targetResolutionDate": "2013-07-30T10:20:01.0Z",
		"status": "In Progress",
		"statusChangeReason": "Waiting for invoicing expert.",
		"statusChangeDate": "2013-07-24T08:55:12.0Z",
		"relatedParty": [{
				"href": " https:server:port/customerManagement/customer/1234",
				"role": "Originator"
			},
			{
				"href": " https:server:port/partyManagement/individual/1234",
				"role": "Owner"
			},
			{
				"href": " https:server:port/partyManagement/individual/2333",
				"role": "Reviser"
			}
		],
		"relatedObject": [{
				"involvement": "Disputed",
				"reference": "/customerBill/1234"
			},
			{
				"involvement": "Adjusted",
				"reference": " https:server:port/billManagement/customerBill/5678"
			}
		],
		"note": [{
				"date": "2013-07-24T09:55:30.0Z",
				"author": "Arthur Evans",
				"text": "Already called the expert"
			},
			{
				"date": "2013-07-25T08:55:12.0Z",
				"author": "Arthur Evans",
				"text": "Informed the originator"
			}
		]
	},
	{
		"id": "43",
		"href": "https:server:port/troubleTicketManagement/troubleTicket/43",
		"correlationId": "TT53483",
		"description": "Customer complaint over last invoice.",
		"severity": "Urgent",
		"@type": "TroubleTicket",
		"creationDate": "2013-07-23T08:16:39.0Z",
		"targetResolutionDate": "2013-07-30T10:20:01.0Z",
		"status": "In Progress",
		"statusChangeReason": "Waiting for invoicing expert.",
		"statusChangeDate": "2013-07-24T08:55:12.0Z",
		"relatedParty": [{
				"href": " https:server:port/customerManagement/customer/1234",
				"role": "Originator"
			},
			{
				"href": " https:server:port/partyManagement/individual/1234",
				"role": "Owner"
			},
			{
				"href": " https:server:port/partyManagement/individual/2344",
				"role": "Reviser"
			}
		],
		"relatedObject": [{
				"involvement": "Disputed",
				"reference": " https:server:port/bilManagement/customerBill/1234"
			},
			{
				"involvement": "Adjusted",
				"reference": " https:server:port/billManagement/customerBill/5678"
			}
		],
		"note": [{
				"date": "2013-07-24T09:55:30.0Z",
				"author": "Arthur Evans",
				"text": "Already called the expert"
			},
			{
				"date": "2013-07-25T08:55:12.0Z",
				"author": "Arthur Evans",
				"text": "Informed the originator"
			}
		]
	}
]





The resources created are identified by a service generated URI. Alternatively, an ID can be provided. The ID in the resource representation and the URI are related. 
[bookmark: _Toc500856333]Create a single resource with attribute selection

Attribute selection MAY be used with POST operation.
Example:

	REQUEST

	POST /api/troubleTicket?fields=none
Content-Type: application/json


{
	"id": "42",
	"href":"http:server:port/troubleTicketManagement/troubleTicket/42",
	"correlationId": "TT53482",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " http:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " http:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " http:server:port/partyMangement/individual/1222",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " http:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " http:server:port/billManagement/CustomerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}






	RESPONSE

	201
Location: http:server:port/troubleTicletManagement/troubleTicket/42
Content-Type: application/json


{
	"id": "42",
	"href":"http:server:port/troubleTicketManagement/troubleTicket/42"	
}




[bookmark: _Toc500856334]Delete Resource Pattern
A Delete operation on a resource is used to remove a new instance of a resource.

A Delete uses the HTTP method DELETE on a Resource URI, for example:
	
Request


	DELETE /troubleTicketManagement/troubleTicket/42



	
Response


	204





A Delete operation MUST use an HTTP DELETE on a resource.
A Delete operation MUST NOT accept a request payload.
A Delete operation MUST return exactly one resource.

If a DELETE method is successfully applied, the origin server SHOULD
   send 
· a 202 (Accepted) status code if the action will likely succeed
   but has not yet been enacted,
·  a 204 (No Content) status code if the
   action has been enacted and no further information is to be supplied,
   or 
· a 200 (OK) status code if the action has been enacted and the
   response message includes a representation describing the status.
[bookmark: _Toc500856335]Task Resource Pattern
This section describes the use of Task resources to expose complex operations that are not easily or not decomposable to CRUD Entity based operations.  Examples include:
- Address Validation
- Prepay Balance top-up
- Order Cancelation
- Alarm Clearing
[bookmark: _Toc226707728][bookmark: _Toc500856336]Modeling Complex operations with task resources
If proper REST design is limited during translation from action-based operational interfaces to REST interfaces it is allowable to define a resource for the operation and POST to that operation to execute. 

A TASK resource name is a verb representing the task to be executed. TASK creation may result in the creation of a number of related resources or other tasks.  E.g. validate, check, heal, migrate, clear, close, transfer etc.

A task operation MUST return:

- a 200 OK if successful and the full representation,
- a 202 Accepted if the operation is performed asynchronous or
- a 204 No content otherwise.

	Response Code List - Success
	200 OK
202 Accepted
204 No content

	Response Code List - Failure
	400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error



If the operation modifies another resource, "303 See Other" is returned. In this case, the "Location" HTTP header shall point to the primary resource.

There are use cases:
· when a task request is simple and there is no need to persist the request but the server may choose to persist the request in any case, e.g. for accounting purposes

· long running task when there is a need to persist the request in order to monitor it.
Simple task request MAY return an ID. 
If an ID is returned it MUST represent a resource that was created for the task.

Iterators MAY be supported on simple task. 


Example:

	
Request


	POST /alarmManagement/alarm/123/clear
Content-Type: application/json

{
……
}


	
Response


	204




Long Running TASKS SHOULD have a state.
Example:
[image: ]
Long running TASKS MUST return an ID and href.
It is not recommended to delete a task but rather to cancel the task with PATCH.

Example:
	
Request


	POST /geographicAddressManagement/validate
Content-Type: application/json

{
    "provideAlternative": true, 
    "validAddress": [
        {
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
    }
}



	
Response


	200

{
    "id": "8318", 
    "href": "https://host:port:location/ geographicAddressManagement/validate/8318"
}



	
[bookmark: _Toc500856337]Using Task with iterator based response
There are scenarios when there MAY be a need to iterate on the response part of the TASK (e.g. iterate on array of the response of the TASK).
The iterator resource SHOULD include as minimum the sub-resource within the response that need to iterate on.

Iterator resource example:

[
    
        {
        "id": "1960", 
        "href": "https://host:port/location/geographicAddress/1960", 
        "streetNr": "2", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationReforValue": {
            "id": "7200", 
            "href": "https://host:port/location/geographicLocation/7200"
        }
    },
    {	
        "id": "8965", 
        "href": "https://host:port/location/geographicAddress/8965", 
        "streetNr": "4", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7204", 
            "href": "https://host:port/location/geographicLocation/7204"
        }
    },
   {
        "id": "7854", 
        "href": "https://host:port/location/geographicAddress/7854", 
        "streetNr": "6", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7263", 
            "href": "https://host:port/location/geographicLocation/7263"
        }
    ]



Example    POST …/validate:

	
Request


	POST /geographicAddressManagement/validate
Accept: application/json


	
Response


	201
Content-Type: application/json
  Link: < https://host:port:location/ geographicAddressManagement/validate/8318/iterator>

{
    "id": "8318", 
    "href": https://host:port:location/ geographicAddressManagement/validate/8318,
    "alternateAddress": [
        {
        "id": "1960", 
        "href": "https://host:port/location/geographicAddress/1960", 
        "streetNr": "2", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationReforValue": {
            "id": "7200", 
            "href": "https://host:port/location/geographicLocation/7200"
        }
    },
    {	
        "id": "8965", 
        "href": "https://host:port/location/geographicAddress/8965", 
        "streetNr": "4", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7204", 
            "href": "https://host:port/location/geographicLocation/7204"
        }
    },
   {
        "id": "7854", 
        "href": "https://host:port/location/geographicAddress/7854", 
        "streetNr": "6", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7263", 
            "href": "https://host:port/location/geographicLocation/7263"
        }
    }
]

}





GET /iterator

	
Request


	GET /geographicAddressManagement/validate/8318/iterator
Accept: application/json


	
Response


	206

Content-Type: application/json
X-Total-Count:10
  Link: < https://host:port:location/ geographicAddressManagement/validate/8313/iterator?offset=0&limit=3>; rel="first", 
 < https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=3&limit=6>; rel="next",
 < https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=0&limit=3>; rel="prev", 
https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=6&limit=9>; rel="last"


    [
        {
        "id": "1960", 
        "href": "https://host:port/location/geographicAddress/1960", 
        "streetNr": "2", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationReforValue": {
            "id": "7200", 
            "href": "https://host:port/location/geographicLocation/7200"
        }
    },
    {	
        "id": "8965", 
        "href": "https://host:port/location/geographicAddress/8965", 
        "streetNr": "4", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7204", 
            "href": "https://host:port/location/geographicLocation/7204"
        }
    },
   {
        "id": "7854", 
        "href": "https://host:port/location/geographicAddress/7854", 
        "streetNr": "6", 
        "streetName": "Denfert-Rocheraut", 
        "streetType": "rue", 
        "postcode": "69004", 
        "locality": "Lyon", 
        "city": "Lyon", 
        "stateOrProvince": "Rhone", 
        "country": "France", 
        "geographicLocationRefOrValue": {
            "id": "7263", 
            "href": "https://host:port/location/geographicLocation/7263"
        }
    }
]


[bookmark: _Toc500856338]Monitor pattern
The monitor resource is used to monitor the execution of async requests on specific resource.
The monitor resource MUST support HTTP GET method.

Supporting Async requests are optional. If supported, then, monitor or notification pattern MUST be used.
A monitor resource SHOULD be defined to support a monitor pattern.

Monitor resource MUST have at least the following attributes:
	Field
	Description

	id
	Identifier of an instance of the monitor. Required to be unique within the resource


	type
	Used in URIs as the identifier for specific instances of a type

	name
	Name of resource type i.e. monitor

	request
	Represents the request

	response
	Represents the response

	state
	The monitor state of the resource. InProgress, InError, Completed

	href
	The reference to this monitor

	sourceHref
	The monitored resource href



PUT/POST/PATCH/DELETE operations SHOULD not be supported.

	REQUEST

	PUT|POST|PATCH|DELETE /api/…/monitor
Accept: application/json

	RESPONSE

	405 Method Not Allowed



The monitors can be accessed via the Monitor collection or a singleton under their source for example: api/activation/service/47/monitor.

Returns HTTP/1.1 status code 200 if the request was successful.
On failure, appropriate error code SHOULD be returned.

The monitor resources SHOULD support at least the following states: in progress, success, failed.

Structure of the monitor can be extended using the extension patterns described in Part 2 of the guidelines.

Example:
The response to POST /activation/service operation cannot be sent synchronously, a monitor resource hyperlink is given in the response

	REQUEST

	POST /api/activation/service
Accept: application/json

  {         
	"state" : "Active",
	"serviceSpecification":{
          "id":"conferenceBridgeEquipment",
          "href":"http: //serverlocation:port/catalogManagement/serviceSpecification /conferenceBridgeEquipment"
     },
     "serviceCharacteristic":[
        {
          "name":"numberOfVc500Units",
          "value":"1"
        },
        {
          "name":"numberOfVc100Units",
          "value":"2"
        },
        {
          "name":"routerType",
          "value":"CiscoASR1000"
        },
        {
          "name":"powerSupply",
          "value":"UK"
        }
     ]}
   }

	RESPONSE

	202 Accepted
Content-Type: Application/JSON
Location: http://server/api/activation/service/14

{
// same as in request
}

Link: <http://server/api/activation/monitor/1514>;rel=related;title=monitor,
<http://server/api/activation/service/14>;rel=self,
<http://server/api/activation/service/14>;rel=canonical






Example: GET a monitor.
	REQUEST

	GET /api/activation/monitor/14
Content-type: application/json

	RESPONSE

	200
Content-Type: application/json

  {
  	"id": "14",
  	"state": "Completed",
  	"type": "monitor",
  	"request": {
  		"method": "POST",
  		"to": "",
  		"body": {
  			"state": "Active",
  			"serviceSpecification": {
  				"id": "conferenceBridgeEquipment",
  				"href": "http: //serverlocation:port/catalogManagement/serviceSpecification /conferenceBridgeEquipment"
  			},
  			"serviceCharacteristic": [{
  					"name": "numberOfVc500Units",
  					"value": "1"
  				},
  				{
  					"name": "numberOfVc100Units",
  					"value": "2"
  				},
  				{
  					"name": "routerType",
  					"value": "CiscoASR1000"
  				},
  				{
  					"name": "powerSupply",
  					"value": "UK"
  				}
  			]
  		}
  	},
  	"header": [{
  		"name": "Accept",
  		"value": "application/json"
  	}],

  	"response": {
  		"statusCode": "202",
  		"body": {
  			"state": "Active",
  			"serviceSpecification": {
  				"id": "conferenceBridgeEquipment",
  				"href": "http: //serverlocation:port/catalogManagement/serviceSpecification /conferenceBridgeEquipment"
  			},
  			"serviceCharacteristic": [{
  					"name": "numberOfVc500Units",
  					"value": "1"
  				},
  				{
  					"name": "numberOfVc100Units",
  					"value": "2"
  				},
  				{
  					"name": "routerType",
  					"value": "CiscoASR1000"
  				},
  				{
  					"name": "powerSupply",
  					"value": "UK"
  				}
  			]
  		},
  		"header": [{
  			"name": "Content-Type",
  			"value": "application/json"
  		}, {
  			"name": "Link",
  			"value": "<http://server/api/activation/monitor/1514>;rel=related;title=monitor,<http: //server/api/activation/service/14>;rel=self,<http: //server/api/activation/service/14>;rel=canonical"
  		}]
  	},
  	"href": "http://host:port:location/activation/monitor/14",
  	"sourceHref": "http//host:port:location/activation/service/14"
  }





[bookmark: _Toc500856339]Notification Patterns
The following section describe the publish subscribe pattern supported by REST based APIs supporting eventing.

A hub can be created at the API level or at each API resource level within an API.



[image: ]

[bookmark: _Toc500856340]Register Listener
The registration of a listener is done by creating a HUB resource unique to the listener (equivalent of a subscription). The HUB resource is attached or bound to the API and its attribute specify the POST event callback address of the listener.

The hub is created via a POST api/hub call. 

The POST call sets the communication endpoint address the service instance must use to deliver notifications (by default on all supported events). Note that a query expression may be supplied. The query expression may be used to filter specific event types and/or any content of the event. The query expression structure used for notification filtering is the same than the one used for queries i.e. GET.

Subsequent POST calls may be rejected by the service if it does not support multiple listeners. In this case DELETE /api/hub/{id} must be called before the endpoint can be created again.

Returns HTTP/1.1 status code 204 if the request was successful.

Returns HTTP/1.1 status code 409 if request is not successful.

Example: Create a Hub to receive events on the “http://in.listener.com" 

	REQUEST

	POST /api/hub
Accept: application/json

{"callback": "http://in.listener.com"}

	RESPONSE

	201
Content-Type: application/json
Location: /api/hub/42

{"id":"42","callback":"http://in.listener.com","query":null}



Example: Get a Hub 

	REQUEST

	GET /api/hub/{id}
Accept: application/json


	RESPONSE

	200
Content-Type: application/json

[
  {
    "id": "string",
    "callback": "string",
    "query": "string"
  }
]



Example: Subscribe to specific eventType.

	REQUEST

	POST /api/hub
Accept: application/json

{"callback": http://in.listener.com,
 
“query”:”eventType = TroubleTicketStateChangeNotification”
}



	RESPONSE

	201
Content-Type: application/json
Location: /api/hub/42

{"id":"42",
"callback":"http://in.listener.com",
"query":””:”eventType = TroubleTicketStateChangeNotification”
}



[bookmark: _Toc500856341][bookmark: _Toc229058392]Unregister Listener 
To unregister a listener the HUB resource corresponding to the listener must be destroyed.

DELETE hub/{id} 

This clears the communication endpoint address that was set by creating the Hub.

On successful deletion, returns HTTP status 200 (OK) along with a response body or returns HTTP status 204 (NO CONTENT) with no response body.
 For the HTTP status 204 the HTTP payload returns no data.

On unsuccessful deletion, the HTTP status 404 (NOT FOUND) can be returned. The 404 (NOT FOUND) status means that the server has not found anything matching the request URI.





	REQUEST

	DELETE /api/hub/{id}
Accept: application/json


	RESPONSE

	204



[bookmark: _Toc500856342]Publishing Events
Publishing an event is done by posting the event to the listener address.

The structure of the event is:

{
    "eventId":"eventId",
    "eventTime":"eventTime",
    "eventType":"event Type",
     "event": {
        "resource" : 
            {--RESOURCE SAMPLE --}
    }
}

Returns HTTP/1.1 status code 201

For example, posting a TroubleTicket event:
	REQUEST

	POST /client/listener
Accept: application/json

{
    "eventId":"00001",
    "eventTime":"2015-11-16T16:42:25-04:00",
    "eventType":"TroubleTicketStateChangeNotification",
     "event": {
        "troubleTicket" : 
            {
	"id": "43",
	"href":"https:server:port/troubleTicketManagement/troubleTicket/43",
	"correlationId": "TT53483",
	"description": "Customer complaint over last invoice.",
	"severity": "Urgent",
	"@type": "TroubleTicket",
	"creationDate": "2013-07-23T08:16:39.0Z",
	"targetResolutionDate": "2013-07-30T10:20:01.0Z",
	"status": "In Progress",
	"statusChangeReason": "Waiting for invoicing expert.",
	"statusChangeDate": "2013-07-24T08:55:12.0Z",
	"relatedParty": [{
			"href": " https:server:port/customerManagement/customer/1234",
			"role": "Originator"
		},
		{
			"href": " https:server:port/partyManagement/individual/1234",
			"role": "Owner"
		},
		{
			"href": " https:server:port/partyManagement/individual/2334",
			"role": "Reviser"
		}
	],
	"relatedObject": [{
			"involvement": "Disputed",
			"reference": " https:server:port/billManagement/customerBill/1234"
		},
		{
			"involvement": "Adjusted",
			"reference": " https:server:port/billManagement/customerBill/5678"
		}
	],
	"note": [{
			"date": "2013-07-24T09:55:30.0Z",
			"author": "Arthur Evans",
			"text": "Already called the expert"
		},
		{
			"date": "2013-07-25T08:55:12.0Z",
			"author": "Arthur Evans",
			"text": "Informed the originator"
		}
	]
}  
    }
}



[bookmark: _Toc500856343]Content type filtering
Provide example on how we can filter events based on their content.
	REQUEST

	POST /api/hub/
Accept: application/json

{
"callback": http://in.listener.com,
 
“query”:”eventType = TroubleTicketStateChangeNotification & event.troubletTicket.severity=Urgent”,
“fields”:”event.troubleTicket.id, event.TroubleTicket.name, event.troubleTicket.severity”
}



	RESPONSE

	201
Content-Type: application/json

{
“id”:”string”
"callback": http://in.listener.com,
 
“query”:”eventType = TroubleTicketStateChangeNotification & event.troubletTicket.severity=Urgent”,
“fields”:”event.troubleTicket.id, event.TroubleTicket.name, event.troubleTicket.severity”
}





[bookmark: _Toc500856344]Versioning
[bookmark: _Toc500856345]API Versioning
REST APIs MUST state version with “v” following the API Name, e.g.:  APIName/v1/resource.
The schema associated with a REST API must have its version number aligned with that of the REST API.
The version number has major, minor and revision numbers. E.g. v1.0.0
The version number (without the revision number) is held in the URI. E.g troubleTicketManagement/v1/ticket
The major version number is incremented for an incompatible change.
The minor version number is incremented for a compatible change.

For minor modifications of the API, version numbering must not be updated, provided the following backward compatibility rules are respected:
· New elements in a data type must be optional (minOccurs=0) 
· Changes in the cardinality of an attribute in a data type must be from mandatory to  optional or from lower to greater 
· New attributes defined in an element must be optional (absence of use=”required”). 
· If new enumerated values are included, the former ones and its meaning must be kept. 
· If new operations are added, the existing operations must be kept 
· New parameters added to existing operations must be optional and existing parameters must be kept

For major modifications of the API, not backward compatible and forcing client implementations to be changed, the version number must be updated.

The format for the API version number is defined as:
{serverRoot}/{apiName}/{apiVersion} 
where
{apiName} is the name of the API {apiVersion} is the version of the API (e.g. v1) {serverRoot} is implementation specific (e.g.: https://api.service.company.com)

The versioning is applied uniformly to all the entities under a versioned API. That is, it is assumed that entities under the management scope of the API are all aligned with the same version of the SID for example.
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