

TM Forum 2015. All Rights Reserved.

Frameworx Specification

REST API Design Guidelines
Part 2

Advanced guidelines for RESTful APIs lifecycle
management, polymorphism, common tasks

 TMF631

 Release 14.5.1

 March 2015

Latest Update: Frameworx Release 14.5 TM Forum Approved

Version 1.1.1 IPR Mode: RAND

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 2 of 34

Notice

Copyright © TM Forum 2015. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published, and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this section are included on all such copies and derivative
works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to TM FORUM, except as needed for the purpose of developing
any document or deliverable produced by a TM FORUM Collaboration Project Team (in which
case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

TM FORUM invites any TM FORUM Member or any other party that believes it has patent
claims that would necessarily be infringed by implementations of this TM Forum Standards Final
Deliverable, to notify the TM FORUM Team Administrator and provide an indication of its
willingness to grant patent licenses to such patent claims in a manner consistent with the IPR
Mode of the TM FORUM Collaboration Project Team that produced this deliverable.

The TM FORUM invites any party to contact the TM FORUM Team Administrator if it is aware of
a claim of ownership of any patent claims that would necessarily be infringed by
implementations of this TM FORUM Standards Final Deliverable by a patent holder that is not
willing to provide a license to such patent claims in a manner consistent with the IPR Mode of
the TM FORUM Collaboration Project Team that produced this TM FORUM Standards Final
Deliverable. TM FORUM may include such claims on its website, but disclaims any obligation to
do so.

TM FORUM takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this TM FORUM Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort to
identify any such rights. Information on TM FORUM's procedures with respect to rights in any
document or deliverable produced by a TM FORUM Collaboration Project Team can be found
on the TM FORUM website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of
this TM FORUM Standards Final Deliverable, can be obtained from the TM FORUM Team

http://www.tmforum.org/IPRPolicy/11525/home.html

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 3 of 34

Administrator. TM FORUM makes no representation that any information or list of intellectual
property rights will at any time be complete, or that any claims in such list are, in fact, Essential
Claims.

Direct inquiries to the TM Forum office:

240 Headquarters Plaza,
East Tower – 10th Floor,
Morristown, NJ 07960 USA

Tel No. +1 973 944 5100

Fax No. +1 973 944 5110

TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 4 of 34

Table of Contents

Notice ... 2

Table of Contents ... 4

List of Figures ... 5

List of Tables .. 5

Executive Summary .. 6

1. Polymorphic Collections and Types .. 7
Query using base collection ...8

2. Export and Import Data Tasks .. 12
Export Job Resource .. 12
Import Job Resource ... 13
Creating Export Jobs .. 15
Creating Import Jobs ... 16
Query Export Jobs ... 17
Query Import Jobs ... 17
Export Job Completion Notification .. 18
Import Job Completion Notification .. 18

3. Depth Directive .. 20

4. Entity Versioning and Lifecycle Management .. 24
Query all versioned resources .. 25
Query a specific versioned resource .. 26
Query current version of a resource .. 27
Create new version of a resource ... 27
Modify an existing version of a resource .. 28
Role based Access Control .. 30

5. Appendix A: Terms and Abbreviations Used within this Document 31
Terminology ... 31
Abbreviations and Acronyms .. 31

6. References .. 32
References ... 32

7. Administrative Appendix .. 33
Document History ... 33

7.0.1. Version History ... 33
7.0.2. Release History .. 33

Company Contact Details .. 34
Acknowledgments ... 34

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 5 of 34

List of Figures

N/A

List of Tables

N/A

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 6 of 34

Executive Summary

This document, “REST API Design Guidelines Part 2” provides information
for the development of TM Forum APIs using REST.

It provides recommendations and guidelines for the implementation of the
Polymorphic Operations, Common Export and Import Tasks and finally the
Entity Lifecycle Management related patterns.

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 7 of 34

1. Polymorphic Collections and Types

In the following section we will use a simple example based on a Logical
Resource Inventory Management system to illustrate the concept of
polymorphic collections and types.

Anonymous collections are used to group resource of the same type or
resources related to the same base type.

For example the party collection in a party management system can be
used to group all the individual and organization resources.

 The name of a type in the design guideline represents the

collection linked to the type of resource.

o For example “tpe” represents the collection of all tpe

resources while “link” represents the collection of all the

“link” resources.

 TYPE is a reserved resource attribute like ID is.

o For example a link entity will have a “type”=”link” attribute.

 The name of the TYPE attribute is the same as the name of the

resource.

 Type scoping is implict to the declaration of the collection type.

 The base type of an entity can be used to represent the collection

of all entitities with the same base type.

logicalResource

tpe link

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 8 of 34

o For example the “logicalResource” collection will scope

both the “tpe” and “link” resources.

 The subtype can be used to represent the collection of all entities

of a sub type.

o For example “tpe” only represent the “tpe” resources.

 When querying on a base collection type only the most derived

concrete resource representations are returned. The abstract

resource is never returned.

o GET /logicalResource will only return resource

representation for “tpe or “link”. Never for “party”.

 A base collection can only be used as the base colelction type to

target entities related by the same super type.

 Every entity must be adressable via their proper collections. Only

the most derived resource is the representation of the entity there

are no other representations.

o For example it may possible to do a GET

/logicalResource/?type=”link”&”id”=”42” or GET /link/42 will

return the same resources.

 Only concrete resources support the CUD uniform operations

o POST operations are not supported against BASE TYPES

o PUT operations are not supported against BASE TYPES

o PATCH operations are not supported against BASE TYPES

o DELETE operations are not supported against BASE TYPES

 Abstract resources may support GET operations

 Notifications are always relative to the concrete type or most

derived resource representation.

Query using base collection

The following example operation shows how to retrieve collections of any logical
resource items.
For example we can retrieve both tpe and links using this operation.

REQUEST

GET /api/inventory/logicalResource

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 9 of 34

Accept: application/json

RESPONSE

200

Content-Type: application/json

Content-Range: 1-3/3

[
 {
 "id": "1",
 "type": "tpe",
 "isBundle": false,
 "alias": [
 {
 "name": "CLI name",
 "value": "tpe22938"
 }
],
 "href": "http://server/api/inventory/tpe/1"
 },
 {
 "id": "2",
 "type": "tpe",
 "isBundle": false,
 "alias": [
 {
 "name": "CLI name",
 "value": "tpe22938"
 }
],
 "href": "http://server/api/inventory/tpe/2"
 },
 {
 "id": "3",
 "type": "link",
 "isBundle": false,
 "href": "http://server/api/inventory/link/3",
 "tp": [
 {
 "href": "http://server/api/inventory/tpe/1",
 "role": "AEND"

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 10 of 34

 },
 {
 "href": "http://server/api/inventory/tpe/2",
 "role": "ZEND"
 }
]
 }
]

Or using ID based filtering to extract specific resources.

REQUEST

GET /api/inventory/logicalResource?id=1&id=3

Accept: application/json

RESPONSE

200

Content-Type: application/json

[
 {
 "id": "1",
 "type": "tpe",
 "isBundle": false,
 "alias": [
 {
 "name": "CLI name",
 "value": "tpe22938"
 }
],
 "href": "http://server/api/inventory/tpe/1"
 },
 {
 "id": "3",
 "type": "link",
 "isBundle": false,
 "href": "http://server/api/inventory/link/3",

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 11 of 34

 "tp": [
 {
 "href": "http://server/api/inventory/tpe/1",
 "role": "AEND"
 },
 {
 "href": "http://server/api/inventory/tpe/2",
 "role": "ZEND"
 }
]
 }
]

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 12 of 34

2. Export and Import Data Tasks

This section describes the common tasks used for exporting and importing
resources representations to files.

Two common task resources are defined:

 ImportJob used to import resources from a File

 ExportJob used to export resources to a File

Export Job Resource

An ExportJob resource represents a TASK used to export resources to a File

The ExportJob resource supports the following properties:

Attribute name Description

query Used to scope the exported data (identical to GET

filter construct using target ID as base)

“query”: ”type=productOffering&version=2.0”

path URL of the root resource acting as the source for

for streaming content to the file specified by the

ExportJob

../catalogManagement/catalog/42

i.e the relative path to the exportJob when it

was created can also be used

content-type The format of the exported data .By default

“application/json”

status notstarted, running, succeeded, failed

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 13 of 34

url URL of the File containing the data to be exported

a file URL, which is of the form

file://host/path

where host is the fully qualified domain name of the system

on which the path is accessible, and path is a hierarchical

directory path of the form directory/directory/.../name

completionDate Date at which the Job was completed.

creationDate Date at which the Job was created.

errorLog Reason for Failure

Import Job Resource

An ImportJob resource represent a TASK used to import resources from a File

The ImportJob resource supports the following properties:

Attribute name Description

content-type The format of the imported data .By default

“application/json”

path URL of the root resource where the content of the

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 14 of 34

file specified by the ImportJob must be applied

../catalogManagement/catalog/42

i.e the relative path to the importJob when it

was created

status notstarted, running, succeeded, failed

url URL of the File containing the data to be imported

a file URL, which is of the form

file://host/path

where host is the fully qualified domain name of the system

on which the path is accessible, and path is a hierarchical

directory path of the form directory/directory/.../name

completionDate Date at which the Job was completed.

creationDate Date at which the Job was created.

errorLog Reason for Failure if status is failed

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 15 of 34

Creating Export Jobs

ExportJob Tasks are created as resources. The ExportJob is attached to a
specific resource acting as the root for the collection of resources to be
streamed to a File.

An ExportJob can be attached to a specific Catalog in a Catalog
application or may be attached to the Product Offerings within a Catalog.

 ../catalogManagement/catalog/42/exportJob

Export all the resources within the Catalog 42

 ../catalogManagement/catalog/42/productOffering/exportJob

Export all the ProductOffering resources

For example:

REQUEST

POST catalogManagement/catalog/{10}/exportJob
Content-type: application/json

{

}

RESPONSE

201
Content-Type: application/json
Location: /api/catalogManagement/exportJob/54

{

 "id": "54",

 "href": "http:/api/catalogManagement/exportJob/54",

 "status": "running",

 “path”: “catalogManagement/catalog/10" ,
 “content-type”: “application/json”,

 "errorLog": "",

 “creationDate” : “2013-04-19T16:42:23-04:00",

 “completionDate” : “",

 "url": "ftp://ftp.myCatalog.com/productCatalog/54"

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 16 of 34

}

Creating Import Jobs

ImportJob Tasks are created as resources. The ImportJob maybe
attached to the URL of the root resource where the content of the file specified
by the ImportJob will be applied.

For example to apply the content of the import file to the catalog 10 :

REQUEST

POST catalogManagement/catalog/{10}/importJob
Content-type: application/json

{

}

RESPONSE

201
Content-Type: application/json
Location: /api/catalogManagement/importJob/554

{

 "id": "554",

 "href": "http:/api/catalogManagement/importJob/554",

 "status": "running",

 “path”: “catalogManagement/catalog/10" ,
 “content-type”: “application/json”,

 "errorLog": "",

 “creationDate” : “2013-04-19T16:42:23-04:00",

 “completionDate” : “",

 "url": "ftp://ftp.myCatalog.com/productCatalog/partner54"

}

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 17 of 34

Query Export Jobs

ExportJob resources can be found under the API/exportJob collection and
may be retrieved using the normal GET constructs.

For example:

GET API/catalogManagement/exportJob/{10}
Accept: application/json

RESPONSE

{

 "id": "10",

 "status": "Succeeded"

}

Query Import Jobs

ImportJob resources can be found under the API/importJob collection and
may be retrieved using the normal GET constructs.

GET /catalogManagement/importJob/{25}
Accept: application/json

RESPONSE

{

 "id": "25",

 "status": "Succeeded"

}

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 18 of 34

Export Job Completion Notification

 This event provides notification that an export task has been completed.

 For example:

REQUEST

POST /client/listener
Accept: application/json

{

 "event": {

 "id": "54",

 "href": "http:/api/catalogManagement/exportJob/54",

 "status": "running",

 “path”: “catalogManagement/catalog/{10}" ,
 “content-type”: “application/json”,

 "errorLog": "",

 “creationDate” : “2013-04-19T16:42:23-04:00",

 “completionDate” : “",

 "url": "ftp://ftp.myCatalog.com/productCatalog/54"

 },

 "eventType": "exportJobCompleted"

}

Import Job Completion Notification

This event provides a notification that an import task has been
completed.

REQUEST

POST /client/listener
Accept: application/json

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 19 of 34

{

 "event": {

 "id": "554",

 "href": "http:/api/catalogManagement/importJob/554",

 "status": "running",

 “path”: “catalogManagement/catalog/10" ,
 “content-type”: “application/json”,

 "errorLog": "",

 “creationDate” : “2013-04-19T16:42:23-04:00",

 “completionDate” : “2013-04-19T16:42:23-04:15",

 "url": "ftp://ftp.myCatalog.com/productCatalog/partner54"

 },

 "eventType": "importJobCompleted"

}

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 20 of 34

3. Depth Directive

A common use case is to query a resource and “dereference” or “embed” the
hyperlinked resource representations. This is achieved by issuing a GET with the
DEPTH directive.

The GET /api/<resource>/?DEPTH=n operation is used to expand inline the
referenced data up to the level of the specified depth level.

In the following example the local represented the dereferenced data for href":
"http://server/api/shelf/7788

GET /catalogManagement/productOffering/23/?depth=3

Accept: application/json

RESPONSE

Content-Range:items 23-24/50

[

 {

 "id": "23",

 "href":

"http://serverlocation:port/catalogManagement/productOffering/23",

 "version": "2.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Sensor mini",

 "description": "A wireless sensor for small garden",

 "isBundle": "false",

 "lifecycleStatus": "Active",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-04:00",

 "endDateTime": "2013-06-19T00:00:00-04:00"

 },

 "category": [

 {

 "id": "14",

 "href":

"http://serverlocation:port/catalogManagement/category/14",

 "version": "2.0",

 "name": "Wireless sensors"

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 21 of 34

 }

],

 "channel": [

 {

 "id": "13",

 "href":

"http://serverlocation:port/marketSales/channel/13",

 "name": "IOT Corner"

 }

],

 "place": [

 {

 "id": "12",

 "href":

"http://serverlocation:port/marketSales/place/12",

 "name": "France"

 }

],

 "serviceLevelAgreement": {

 "id": "28",

 "href":

"http://serverlocation:port/slaManagement/serviceLevelAgreement/28",

 "name": "Standard SLA"

 },

 "productSpecification": [

 {

 "id": "13",

 "href":

"http://serverlocation:port/catalogManagement/productSpecification/13",

 "version": "2.0",

 "name": "wireless sensor mini",

 "productSpecCharacteristic": [

 {

 "id": "34",

 "name": "Colour",

 "description": "Colour",

 "valueType": "string",

 "configurable": "true",

 "validFor": {

 "startDateTime": "2013-

04-19T16:42:23-04:00",

 "endDateTime": ""

 },

 "ProductSpecCharacteristicValue": [

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 22 of 34

 {

 "valueType":

"string",

 "default": "false",

 "value": "Black",

 "unitOfMeasure": "",

 "valueFrom": "",

 "valueTo": "",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-04:00",

 "endDateTime": ""

 }

 }, {

 "valueType":

"string",

 "default": "false",

 "value": "White",

 "unitOfMeasure": "",

 "valueFrom": "",

 "valueTo": "",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-04:00",

 "endDateTime": ""

 }

 }

]

 }

]

 }

],

 "productOfferingPrice": [

 {

 "id": "15",

 "href":

"http://serverlocation:port/catalogManagement/productOfferingPrice/15",

 "name": "Sale Price",

 "description": "Sale price",

 "validFor": {

 "startDateTime": "2013-04-

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 23 of 34

19T16:42:23-04:00",

 "endDateTime": "2013-06-19T00:00:00-

04:00"

 },

 "priceType": "one time",

 "unitOfMeasure": "",

 "price": {

 "taxIncludedAmount": "12.00",

 "dutyFreeAmount": "10.00",

 "taxRate": "20.00",

 "currencyCode": "EUR"

 },

 "recurringChargePeriod": "",

 "productOfferPriceAlteration": {

 "id": "15",

 "href": "

http://serverlocation:port/catalogManagement/productOfferPriceAlteration/1

5",

 "name": "Shipping Discount",

 "description": "One time shipping

discount",

 "validFor": {

 "startDateTime": "2013-04-

19T16:42:23-04:00",

 "endDateTime": ""

 },

 "priceType": "One Time discount",

 "unitOfMeasure": "",

 "price": {

 "percentage": "100%"

 },

 "recurringChargePeriod": "",

 "applicationDuration": "",

 "priceCondition": "apply if total amount

of the order is greater than 300.00"

 }

 }

]

 }

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 24 of 34

4. Entity Versioning and Lifecycle Management

In Product Lifecycle Management there is a requirement to distinguish
between entities existing with different PLM version numbers and
accessible via different ACL mechanisms.

For example the same Product Offerings may exist in a Catalog but with
different version numbers.

It may be possible for an administrator to see all the existing versions or for
a partner to see only a subset of all the existing versions.

The entity version number is not dependent on the version number of the
API. For example in PLM the same API (running at a specific version
number) may be used to retrieve entities with different PLM version
numbers.

In order to distinguish resources representing entities running with different
version numbers and accessible though the same API version the
following directive can be used /id:(version=x) and the version attribute is
added to each entity.

{

 "id": "42",

 "href": "http://serverlocation:port/catalogManagement/productOffering/42",

 "version": "1.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

 "lifecycleStatus": "Active",

…..

}

Note that the resources in this case may have the same ID but may be
distinguished by the inclusion of the version number in their ID i.e

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 25 of 34

/42:(version=1.0), /42:(version=2.0).

In the following examples we will assume that two versions of the
VirtualStorage Product Offer exist in the Product Catalog an Inactive and
Active version respectively version 1.0 and version 2.0.

Query all versioned resources

Admin user of Catalog have access to all the versions of the resources
while non admin users have by default access to only the latest version of
the entities in the Catalog.

Users with different roles may have access to different versions of the
entities in the catalog. For example user A may have access to only the
version 1.0 of the entities while user B may have access to version 1.0 and
version 2.0.

For example the following request on the admin endpoint will return all the
versioned resources matching a specific ID.

REQUEST

GET api/admin/catalogManagement/productOffering/?id=VirtualStorage
Accept: application/json

RESPONSE

200
Content-Type: application/json

[{

 "id": " VirtualStorage ",

 "href":

"http://serverlocation:port/catalogManagement/productOffering/VirtualStorage",

 "version": "1.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 26 of 34

 "lifecycleStatus": "InActive",

…..

},

{

 "id": " VirtualStorage ",

 "href": "http://serverlocation:port/catalogManagement/productOffering/

VirtualStorage ",

 "version": "2.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

 "lifecycleStatus": "Active",

…..

}

]

Query a specific versioned resource

In general a non admin API user only has visibility to the latest version number or
visibility to a subset of versioned resources.

It may be possible for an admin API user to retrieve a resource with a specific version
number by using an ID and versioning filtering criteria.

REQUEST

GET
api/admin/catalogManagement/productOffering/?id=VirtualStorage&version=1.0
Accept: application/json

RESPONSE

200
Content-Type: application/json

[{

 "id": "42",

 "href": "http://serverlocation:port/catalogManagement/productOffering/42",

 "version": "1.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 27 of 34

 "isBundle": "true",

 "lifecycleStatus": "Active",

…..

]

Query current version of a resource

By default only the most current version is returned (for admin and non admin).

REQUEST

GET api/admin/catalogManagement/productOffering/VirtualStorage
Accept: application/json

RESPONSE

200
Content-Type: application/json

{

 "id": "42",

 "href": "http://serverlocation:port/catalogManagement/productOffering/42",

 "version": "2.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

 "lifecycleStatus": "Active",

…..

}

Create new version of a resource

POST is used to create a new version of a resource.

The constraint is that the version numbers for the resource having the same ID must
differ.

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 28 of 34

REQUEST

POST catalogManagement/productOffering
Content-type: application/json

{

 “id”: “VirtualStorage”,

 "version": "3.0",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

 "lifecycleStatus": "Active",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-04:00",

 "endDateTime": "2013-06-19T00:00:00-04:00"

 },

…

 }

RESPONSE

201
Content-Type: application/json

{

 "id": "VirtualStorage",

 "href": "http://serverlocation:port/catalogManagement/productOffering/42",

 "version": "3.0",

 "lastUpdate": "2013-04-19T16:42:23-04:00",

 "name": "Virtual Storage Medium",

 "description": "Virtual Storage Medium",

 "isBundle": "true",

 "lifecycleStatus": "Active",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-04:00",

 "endDateTime": "2013-06-19T00:00:00-04:00"

 },

…

 }

Modify an existing version of a resource

By default PATCH or PUT will be acting only on the latest version of the Resource.
For example PATCH /…/productOffering/VirtualStorage will only update the
VirtualStoage ProductOffering at Version 2.0 (which is the most current).

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 29 of 34

To update a specific version of an entity the (Version=X) directive is added to the ID
(i.e /id:(version=x) .

Note that this capability is only available to API users having the proper authorizations
to change the catalog entities with specific version numbers.

For example to change the VirtualStorage versioned at 1.0 we could use
/productOffering/VirtualStorage(Version=1.0)

REQUEST

PATCH /catalogManagement/productOffering/VirtualStorage(Version=1.0)
Content-type: application/json-patch+json

{

"lifecycleStatus": "Active"

 }

RESPONSE

201
Content-Type: application/json

{

 "id": "VirtualStorage",

 "href":

"http://serverlocation:port/catalogManagement/productOffering/VirtualStorage",

 "version": "1.0",

"lifecycleStatus": "Active",

…..

}

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 30 of 34

Role based Access Control

The user presents their credentials for authentication

If the credentials are valid

1. The user is given access to the catalog

2. As defined by their role(s)

3. As defined by their access rights

4. As defined by the access type: CRUD, discover

5. As defined by the pre-defined filter

For example if they issue a get on a catalog that a party has no access
they get an error response

Or if they try to modify an area of the catalog but do not have Write Access
they get an error response

We anticipate that the OAUTH2 or Open ID Connect will be used as the
authorization APIs and that ACL are established between authorized
parties with regards to the content of the Catalog (i.e GET but also enable
of update operations on specific entities).

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 31 of 34

5. Appendix A: Terms and Abbreviations Used within this

Document

 Terminology

Term Definition TMF or Outside Source

<<BA Specific Term 1>> <<Definition 1>> <<Source>>

<<BA Specific Term n>> <<Definition n>> <<Source>>

 Abbreviations and Acronyms

Abbreviation/
Acronym

Abbreviation/
Acronym Spelled

Out

Definition TMF or External
Source

<<Abbreviation/
Acronym 1>>

<<Expansion of
abbreviation/acrony
m 1>>

<<Definition 1>> <<Source>>

<<Abbreviation/
Acronym n>>

<<Expansion of
abbreviation/acrony
m n>>

<<Definition n>> <<Source>>

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 32 of 34

6. References

References

Reference Description Source Brief Use Summary

Project
Charter

<<PROJECT name>>
Project Charter

 <<summary>>

Link To
Models

<< Hyperlinks to or
location of associated
models>>

 <<summary>>

<<Reference
1>>

<<Type, Title, Number,
Revision, Date>>

 <<summary>>

<<Reference
n>>

<< Type, Title, Number,
Revision, Date>>

 <<summary>>

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 33 of 34

7. Administrative Appendix

This Appendix provides additional background material about the TM Forum and this
document. In general, sections may be included or omitted as desired; however, a
Document History must always be included.

Document History

7.0.1. Version History

<This section records the changes between this and the previous document
version as it is edited by the team concerned. Note: this is an incremental number
which does not have to match the release number and used for change control
purposes only>

Version Number Date Modified Modified by: Description of
changes

1.0 23/11/2014 Pierre Gauthier
TM Forum

Description e.g.
first issue of
document

1.1.1 12/03/2015 Alicja Kawecki,
TM Forum

Updated cover,
footer and Notice
to reflect TM
Forum Approved
status

7.0.2. Release History

< This section records the changes between this and the previous Official
document release. The release number is the ‘Marketing’ number which this
version of the document is first being assigned to >

Release Number Date Modified Modified by: Description of
changes

1.0 DD/MMM/YY <<name>> first release of
document

REST API Design Guidelines Part 2

 © TM Forum 2015. All Rights Reserved. Page 34 of 34

 Company Contact Details

Company Team Member
Representative

Include all involved
companies adding lines as
necessary.

Name
Title
Email
Phone
Fax

 Name
Title
Email
Phone
Fax

 Acknowledgments

This document was prepared by the members of the TM Forum <<team name>>
team:

o Pierre Gauthier, TM Forum, Editor and Team Leader

o Maxime Delon Orange

o Veronique Mauneau Orange

o John Morey Ciena

