[image: Macintosh HD:Users:itsupport:Desktop:2012Files:2013Branding:TMForumUSLetterhead2013Header.jpg]
[image:]

Resource Catalog API
Conformance Profile

Document Number TMF634B
August 2017

	Release: Frameworx Release 17.0
	Status: Member Evaluation

	Version: 1.0.0
	IPR Mode: RAND

[bookmark: _Toc476778218][bookmark: _Toc497300255]NOTICE
[bookmark: OLE_LINK1]Copyright © TM Forum 2017. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and TM FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:
4 Century Drive
Suite 100
Parsippany, NJ 07054, USA
Tel No. +1 973 944 5100
Fax No. +1 973 944 5110
TM Forum Web Page: www.tmforum.org
[bookmark: _Toc497300256]Table of Contents
NOTICE	2
Table of Contents	3
Introduction - API DESCRIPTION	6
RESOURCE MODEL CONFORMANCE	7
API MANDATORY AND OPTIONAL RESOURCES	7
Resource Catalog MANDATORY AND OPTIONAL ATTRIBUTES	7
Resource Category MANDATORY AND OPTIONAL ATTRIBUTES	8
Resource Candidate MANDATORY AND OPTIONAL ATTRIBUTES	9
Resource Specification MANDATORY AND OPTIONAL ATTRIBUTES	10
Logical Resource Spec MANDATORY AND OPTIONAL ATTRIBUTES	11
Physical Resource Spec MANDATORY AND OPTIONAL ATTRIBUTES	12
Import Job MANDATORY AND OPTIONAL ATTRIBUTES	14
Export Job MANDATORY AND OPTIONAL ATTRIBUTES	14
NOTIFICATION MODEL CONFORMANCE	16
API MANDATORY AND OPTIONAL NOTIFICATIONS	16
API OPERATIONS CONFORMANCE	18
API MANDATORY AND OPTIONAL OPERATIONS	18
API GET OPERATION CONFORMANCE	20
/resourceCatalog?fields=...&{filtering}	20
/resourceCatalog/{id}?fields=...&{filtering}	20
/resourceCategory?fields=...&{filtering}	20
/resourceCategory/{id}?fields=...&{filtering}	21
/resourceCandidate?fields=...&{filtering}	21
/resourceCandidate/{id}?fields=...&{filtering}	21
/resourceSpecification?fields=...&{filtering}	21
/resourceSpecification/{id}?fields=...&{filtering}	21
/logicalResourceSpec?fields=...&{filtering}	21
/logicalResourceSpec/{id}?fields=...&{filtering}	21
/physicalResourceSpec?fields=...&{filtering}	21
/physicalResourceSpec/{id}?fields=...&{filtering}	21
/importJob?fields=...&{filtering}	22
/importJob/{id}?fields=...&{filtering}	22
/exportJob?fields=...&{filtering}	22
/exportJob/{id}?fields=...&{filtering}	22
API POST OPERATION CONFORMANCE	23
/resourceCatalog	23
/resourceCategory	24
/resourceCandidate	24
/resourceSpecification	25
/logicalResourceSpec	26
/physicalResourceSpec	27
/importJob	29
/exportJob	29
API PUT OPERATION CONFORMANCE	31
API PATCH OPERATION CONFORMANCE	32
/resourceCatalog/{id}	32
/resourceCategory/{id}	33
/resourceCandidate/{id}	34
/resourceSpecification/{id}	34
/logicalResourceSpec/{id}	36
/physicalResourceSpec/{id}	37
API DELETE OPERATION CONFORMANCE	39
/resourceCatalog/{id}	39
/resourceCategory/{id}	39
/resourceCandidate/{id}	39
/resourceSpecification/{id}	39
/logicalResourceSpec/{id}	39
/physicalResourceSpec/{id}	39
/importJob/{id}	39
/exportJob/{id}	39
API CONFORMANCE TEST SCENARIOS	40
ResourceCandidate resource TEST CASES	41
ResourceSpecification resource TEST CASES	44
LogicalResourceSpec resource TEST CASES	48
PhysicalResourceSpec resource TEST CASES	52
ImportJob resource TEST CASES	56
ExportJob resource TEST CASES	58
Release History	59
Contributors to Document	60

[bookmark: _Toc497300257][bookmark: _Toc468360904]Introduction - API DESCRIPTION
This document is the REST API Conformance profile for the Resource Catalog Management REST API v2.0.

[bookmark: _Toc497300258]RESOURCE MODEL CONFORMANCE
[bookmark: _Toc497300259]API MANDATORY AND OPTIONAL RESOURCES
For the resources defined by the API fill the following table and indicate which ones are mandatory and which ones are optional.

	Resource Name
	Mandatory or Optional
	Comments

	ResourceCatalog
	O
	

	ResourceCategory
	O
	

	ResourceCandidate
	M
	

	ResourceSpecification
	M
	

	LogicalResourceSpec
	M
	

	PhysicalResourceSpec
	M
	

	ImportJob
	M
	

	ExportJob
	M
	

Only Mandatory resources are included in the basic certification.

[bookmark: _Toc497300260]Resource Catalog MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ResourceCatalog"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (in response messages)
O (otherwise)
	

	@schemaLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lastUpdate
	M (in response messages)
O (otherwise)
	

	lifecycleStatus
	M (in response messages)
O (otherwise)
	

	relatedParty
	O
	

	category
	O
	

[bookmark: _Toc497300261]Resource Category MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ResourceCategory"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (in response messages)
O (otherwise)
	

	@schemalLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lifecycleStatus
	M (in response messages)
O (otherwise)
	

	lastUpdate
	M (in response messages)
O (otherwise)
	

	parentId
	O
	

	isRoot
	M (in response messages)
O (otherwise)
	

	category
	O
	

	resourceCandidate
	O
	

	relatedParty
	O
	

[bookmark: _Toc497300262]Resource Candidate MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ResourceCandidate"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (in response messages)
O (otherwise)
	

	@schemaLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lastUpdate
	M (in response messages)
O (otherwise)
	

	lifecycleStatus
	M (in response messages)
O (otherwise)
	

	category
	O
	

	resourceSpecification
	O
	

[bookmark: _Toc497300263]Resource Specification MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ResourceSpecification"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (for resource creation)
O (otherwise)
	Attribute non patchable

	@schemaLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lastUpdate
	M (in response messages)
O (otherwise)
	Attribute non patchable

	lifecycleStatus
	M (in response messages)
O (otherwise)
	

	isBundle
	M (in response messages)
O (otherwise)
	

	category
	O
	

	targetResourceSchema
	O
	

	feature
	O
	

	attachment
	O
	

	relatedParty
	O
	

	resourceSpecCharacteristic
	O
	

	resourceSpecRelationship
	O
	

[bookmark: _Toc497300264]Logical Resource Spec MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "LogicalResourceSpec"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (for resource creation)
O (otherwise)
	Attribute non patchable

	@schemaLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lastUpdate
	M (in response messages)
O (otherwise)
	Attribute non patchable

	lifecycleStatus
	M (in response messages)
O (otherwise)
	

	isBundle
	M (in response messages)
O (otherwise)
	

	category
	O
	

	targetResourceSchema
	O
	

	feature
	O
	

	attachment
	O
	

	relatedParty
	O
	

	resourceSpecCharacteristic
	O
	

	resourceSpecRelationship
	O
	

[bookmark: _Toc497300265]Physical Resource Spec MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "PhysicalResourceSpec"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	name
	M (for resource creation)
O (otherwise)
	

	description
	O
	

	@type
	M (for resource creation)
O (otherwise)
	Attribute non patchable

	@schemaLocation
	O
	

	@baseType
	O
	

	version
	O
	

	validFor
	O
	

	lastUpdate
	M (in response messages)
O (otherwise)
	Attribute non patchable

	lifecycleStatus
	O
	

	isBundle
	M (in response messages)
O (otherwise)
	

	category
	O
	

	model
	M (in response messages)
O (otherwise)
	

	part
	O
	

	sku
	O
	

	vendor
	M (in response messages)
O (otherwise)
	

	place
	O
	

	targetResourceSchema
	O
	

	feature
	O
	

	attachment
	O
	

	relatedParty
	O
	

	resourceSpecCharacteristic
	O
	

	resourceSpecRelationship
	O
	

[bookmark: _Toc497300266]Import Job MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ImportJob"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	contentType
	O
	

	path
	O
	

	status
	O
	

	url
	M (for resource creation)
O (otherwise)
	

	completionDate
	O
	

	creationDate
	O
	

	errorLog
	O
	

[bookmark: _Toc497300267]Export Job MANDATORY AND OPTIONAL ATTRIBUTES
The table below summarizes mandatory and optional attributes for resource "ExportJob"
	
Attribute Name
	
Mandatory or Optional
	
Comments

	id
	M (in response messages)
O (otherwise)
	Generated by the server

	href
	M (in response messages)
O (otherwise)
	Url for the created resource

	query
	O
	

	path
	O
	

	contentType
	O
	

	status
	O
	

	url
	M (for resource creation)
O (otherwise)
	

	completionDate
	O
	

	creationDate
	O
	

	errorLog
	O
	

[bookmark: _Toc497300268]NOTIFICATION MODEL CONFORMANCE
The Pub/Sub models are common and described in the TMF REST Design Guidelines. Use the following templates to describe the Hub Mandatory and Optional attributes and filtering support.

[bookmark: _Toc497300269]API MANDATORY AND OPTIONAL NOTIFICATIONS
For the Notifications defined by the API the following table indicates which ones are mandatory and which ones are optional.

	Notification Name
	Mandatory or Optional
	Comments

	ResourceCatalogCreationNotification
	O
	

	ResourceCatalogRemoveNotification
	O
	

	ResourceCatalogBatchNotification
	O
	

	ResourceCategoryCreationNotification
	O
	

	ResourceCategoryRemoveNotification
	O
	

	ResourceCandidateCreationNotification
	O
	

	ResourceCandidateRemoveNotification
	O
	

	ResourceSpecificationCreationNotification
	O
	

	ResourceSpecificationRemoveNotification
	O
	

	LogicalResourceSpecCreationNotification
	O
	

	LogicalResourceSpecRemoveNotification
	O
	

	PhysicalResourceSpecCreationNotification
	O
	

	PhysicalResourceSpecRemoveNotification
	O
	

All attributes of the resource associated with the notification are mandatory
[bookmark: _Toc497300270] API OPERATIONS CONFORMANCE
For every single resource use the following templates and define what operations are optional and what operations are mandatory.
[bookmark: _Toc497300271]API MANDATORY AND OPTIONAL OPERATIONS
The following table indicates which ones are mandatory and which ones are optional for each one of the resources in the API (default is for all resources).

	Uniform API Operation
	Mandatory/Optional
	Comments

	GET
	M for all resources
	GET must be used to retrieve a representation of a resource

	POST
	M for resources:
ResourceCatalog
ResourceCategory
ResourceCandidate
ResourceSpecification
LogicalResourceSpec
PhysicalResourceSpec
ImportJob
ExportJob
	POST must be used to create a new resource

	PUT
	O for all resources:

	

	PATCH
	M for resources:
ResourceCatalog
ResourceCategory
ResourceCandidate
ResourceSpecification
LogicalResourceSpec
PhysicalResourceSpec
	PATCH must be used to partially update a resource

	DELETE
	M for resources:
ResourceCatalog
ResourceCategory
ResourceCandidate
ResourceSpecification
LogicalResourceSpec
PhysicalResourceSpec
ImportJob
ExportJob
	DELETE must be used to remove a resource

[bookmark: _Toc497300272]API GET OPERATION CONFORMANCE
For every single resource use the following template to specify the mandatory and optional features supported by the GET operation.
Definitions

Filtered Search: A filtered search can be applied using query parameters in order to obtain only the resource entities that meet the criteria defined by the filtering parameters included in the query request. Several elements can be applied to the filtered search. In that case logic, a logical AND is applied to combine the criteria (e.g.:?severity=<value> &status=<value>)

Attribute selection (Filtered Response Data): In order to apply a filter and limit the number of attributes included in the response, the GET request can include the “?fields=” query parameter. Several elements can be applied to the filter. In that case, a logical AND is applied to combine the values (e.g.:?fields=severity,status) will provide in the response only the values assigned to attributes category and channel. Attribute selection capabilities are the same for collections retrieval and individual resource queries

All the GET operations in this API share the same status code pattern.
	GET
	M
	

	Response Status Code 200
	M
	

	Other Status Codes
	NA
	

[bookmark: _Toc497300273]/resourceCatalog?fields=...&{filtering}
This operation list resource catalog entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300274]/resourceCatalog/{id}?fields=...&{filtering}
This operation retrieves a resource catalog entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300275]/resourceCategory?fields=...&{filtering}
This operation list resource category entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300276]/resourceCategory/{id}?fields=...&{filtering}
This operation retrieves a resource category entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300277]/resourceCandidate?fields=...&{filtering}
This operation list resource candidate entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300278]/resourceCandidate/{id}?fields=...&{filtering}
This operation retrieves a resource candidate entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300279]/resourceSpecification?fields=...&{filtering}
This operation list resource specification entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300280]/resourceSpecification/{id}?fields=...&{filtering}
This operation retrieves a resource specification entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300281]/logicalResourceSpec?fields=...&{filtering}
This operation list logical resource spec entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300282]/logicalResourceSpec/{id}?fields=...&{filtering}
This operation retrieves a logical resource spec entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300283]/physicalResourceSpec?fields=...&{filtering}
This operation list physical resource spec entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300284]/physicalResourceSpec/{id}?fields=...&{filtering}
This operation retrieves a physical resource spec entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300285]/importJob?fields=...&{filtering}
This operation list import job entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300286]/importJob/{id}?fields=...&{filtering}
This operation retrieves an import job entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300287]/exportJob?fields=...&{filtering}
This operation list export job entities.
Attribute selection is mandatory for all first level attributes.
Filtering is mandatory for first compliance level (L1) and optional otherwise.
[bookmark: _Toc497300288]/exportJob/{id}?fields=...&{filtering}
This operation retrieves an export job entity.
Attribute selection is mandatory for all first level attributes.
Filtering on sub-resources is optional for all compliance levels.
[bookmark: _Toc497300289]API POST OPERATION CONFORMANCE

All the POST operations in this API share the same status code pattern.
	POST
	M
	

	Status Code 201
	M
	

	Other Status Codes
	NA
	Status error code like 400, 404, 409 as applicable

[bookmark: _Toc497300290]/resourceCatalog
This operation creates a resource catalog entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ResourceCatalog, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@type
	ResourceCatalog
	

	@schemaLocation
	
	

	@baseType
	Catalog
	

	version
	
	

	validFor
	
	

	lastUpdate
	
	

	lifecycleStatus
	
	

	relatedParty
	
	

	category
	
	

[bookmark: _Toc497300291]/resourceCategory
This operation creates a resource category entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ResourceCategory, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@type
	
	

	@schemalLocation
	
	

	@baseType
	
	

	version
	
	

	validFor
	
	

	lifecycleStatus
	
	

	lastUpdate
	
	

	parentId
	
	

	isRoot
	
	

	category
	
	

	resourceCandidate
	
	

	relatedParty
	
	

[bookmark: _Toc497300292]/resourceCandidate
This operation creates a resource candidate entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ResourceCandidate, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@type
	
	

	@schemaLocation
	
	

	@baseType
	
	

	version
	
	

	validFor
	
	

	lastUpdate
	
	

	lifecycleStatus
	
	

	category
	
	

	resourceSpecification
	
	

[bookmark: _Toc497300293]/resourceSpecification
This operation creates a resource specification entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ResourceSpecification, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	@type
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@schemaLocation
	
	

	@baseType
	
	

	version
	
	

	validFor
	
	

	lastUpdate
	
	

	lifecycleStatus
	
	

	isBundle
	
	

	category
	
	

	targetResourceSchema
	
	

	feature
	
	

	attachment
	
	

	relatedParty
	
	

	resourceSpecCharacteristic
	
	

	resourceSpecRelationship
	
	

Additional Rules
The following table provides additional rules indicating mandatory fields in sub-resources or relationships when creating a ResourceSpecification resource.
	Context
	Mandatory Sub-Attributes

	attachment
	name

	relatedParty
	id or href

	resourceSpecRelationship
	type, id or href

	feature
	name or id

[bookmark: _Toc497300294]/logicalResourceSpec
This operation creates a logical resource spec entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a LogicalResourceSpec, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	@type
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@schemaLocation
	
	

	@baseType
	
	

	version
	
	

	validFor
	
	

	lastUpdate
	
	

	lifecycleStatus
	
	

	isBundle
	
	

	category
	
	

	targetResourceSchema
	
	

	feature
	
	

	attachment
	
	

	relatedParty
	
	

	resourceSpecCharacteristic
	
	

	resourceSpecRelationship
	
	

Additional Rules
The following table provides additional rules indicating mandatory fields in sub-resources or relationships when creating a LogicalResourceSpec resource.
	Context
	Mandatory Sub-Attributes

	attachment
	name

	relatedParty
	id or href

	resourceSpecRelationship
	type, id or href

	feature
	name or id

[bookmark: _Toc497300295]/physicalResourceSpec
This operation creates a physical resource spec entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a PhysicalResourceSpec, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	name
	

	@type
	

	model
	

	vendor
	

	Non Mandatory Attributes
	Default Value
	Rule

	description
	
	

	@schemaLocation
	
	

	@baseType
	
	

	version
	
	

	validFor
	
	

	lastUpdate
	
	

	lifecycleStatus
	
	

	isBundle
	
	

	category
	
	

	part
	
	

	sku
	
	

	place
	
	

	targetResourceSchema
	
	

	feature
	
	

	attachment
	
	

	relatedParty
	
	

	resourceSpecCharacteristic
	
	

	resourceSpecRelationship
	
	

Additional Rules
The following table provides additional rules indicating mandatory fields in sub-resources or relationships when creating a PhysicalResourceSpec resource.
	Context
	Mandatory Sub-Attributes

	attachment
	name

	relatedParty
	id or href

	resourceSpecRelationship
	type, id or href

	feature
	name or id

[bookmark: _Toc497300296]/importJob
This operation creates an import job entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ImportJob, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	url
	

	Non Mandatory Attributes
	Default Value
	Rule

	contentType
	
	

	path
	
	

	status
	
	

	completionDate
	
	

	creationDate
	
	

	errorLog
	
	

[bookmark: _Toc497300297]/exportJob
This operation creates an export job entity.
Mandatory and Non Mandatory Attributes
The following tables provides the list of mandatory and non mandatory attributes when creating a ExportJob, including any possible rule conditions and applicable default values. Notice that it is up to an implementer to add additional mandatory attributes.
	Mandatory Attributes
	Rule

	url
	

	Non Mandatory Attributes
	Default Value
	Rule

	query
	
	

	path
	
	

	contentType
	
	

	status
	
	

	completionDate
	
	

	creationDate
	
	

	errorLog
	
	

[bookmark: _Toc497300298]API PUT OPERATION CONFORMANCE

Since PUT operation is optional and not included in the certification this is not applicable in this conformance document.
[bookmark: _Toc497300299]API PATCH OPERATION CONFORMANCE

All the PATCH operations in this API share the same status code pattern.
	PATCH
	M
	

	Status Code 200
	M
	

	Other Status Codes
	NA
	Status error code like 400, 404, 409 as applicable

[bookmark: _Toc497300300]/resourceCatalog/{id}
This operation allows partial updates of a resource catalog entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemaLocation
	

	version
	

	validFor
	

	lifecycleStatus
	

	relatedParty
	

	category
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	name
	

	@type
	

	@baseType
	

	lastUpdate
	

[bookmark: _Toc497300301]/resourceCategory/{id}
This operation allows partial updates of a resource category entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemalLocation
	

	@baseType
	

	version
	

	validFor
	

	lifecycleStatus
	

	parentId
	

	isRoot
	

	category
	

	resourceCandidate
	

	relatedParty
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	@type
	

	lastUpdate
	

[bookmark: _Toc497300302]/resourceCandidate/{id}
This operation allows partial updates of a resource candidate entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemaLocation
	

	@baseType
	

	version
	

	validFor
	

	lifecycleStatus
	

	category
	

	resourceSpecification
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	@type
	

	lastUpdate
	

[bookmark: _Toc497300303]/resourceSpecification/{id}
This operation allows partial updates of a resource specification entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemaLocation
	

	@baseType
	

	version
	

	validFor
	

	lifecycleStatus
	

	isBundle
	

	category
	

	targetResourceSchema
	

	feature
	

	attachment
	

	relatedParty
	

	resourceSpecCharacteristic
	

	resourceSpecRelationship
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	lastUpdate
	

	@type
	

[bookmark: _Toc497300304]/logicalResourceSpec/{id}
This operation allows partial updates of a logical resource spec entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemaLocation
	

	@baseType
	

	version
	

	validFor
	

	lifecycleStatus
	

	isBundle
	

	category
	

	targetResourceSchema
	

	feature
	

	attachment
	

	relatedParty
	

	resourceSpecCharacteristic
	

	resourceSpecRelationship
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	lastUpdate
	

	@type
	

[bookmark: _Toc497300305]/physicalResourceSpec/{id}
This operation allows partial updates of a physical resource spec entity. Support of json/merge (https://tools.ietf.org/html/rfc7386) is mandatory, support of json/patch (http://tools.ietf.org/html/rfc5789) is optional.

Note: If the update operation yields to the creation of sub-resources or relationships, the same rules concerning mandatory sub-resource attributes and default value settings in the POST operation applies to the PATCH operation. Hence these tables are not repeated here.
Patchable and Non Patchable Attributes
The tables below provide the list of patchable and non patchable attributes, including constraint rules on their usage.
Notice that patching is possible only for 'admin' API users.
	Patchable Attributes
	Rule

	name
	

	description
	

	@schemaLocation
	

	@baseType
	

	version
	

	validFor
	

	lifecycleStatus
	

	isBundle
	

	category
	

	model
	

	part
	

	sku
	

	vendor
	

	place
	

	targetResourceSchema
	

	feature
	

	attachment
	

	relatedParty
	

	resourceSpecCharacteristic
	

	resourceSpecRelationship
	

	Non Patchable Attributes
	Rule

	id
	

	href
	

	lastUpdate
	

	@type
	

[bookmark: _Toc497300306]API DELETE OPERATION CONFORMANCE
	
All the DELETE operations in this API share the same status code pattern.
	DELETE
	M
	

	Status Code 204
	M
	

	Other Status Codes
	NA
	Status error code like 400, 404, 409 as applicable

[bookmark: _Toc497300307]/resourceCatalog/{id}
This operation deletes a resource catalog entity.
[bookmark: _Toc497300308]/resourceCategory/{id}
This operation deletes a resource category entity.
[bookmark: _Toc497300309]/resourceCandidate/{id}
This operation deletes a resource candidate entity.
[bookmark: _Toc497300310]/resourceSpecification/{id}
This operation deletes a resource specification entity.
[bookmark: _Toc497300311]/logicalResourceSpec/{id}
This operation deletes a logical resource spec entity.
[bookmark: _Toc497300312]/physicalResourceSpec/{id}
This operation deletes a physical resource spec entity.
[bookmark: _Toc497300313]/importJob/{id}
This operation deletes an import job entity.
[bookmark: _Toc497300314]/exportJob/{id}
This operation deletes an export job entity.
[bookmark: _Toc468360918][bookmark: _Toc497300315]API CONFORMANCE TEST SCENARIOS
This section describes the test scenarios required for the basic CONNECT certification of the API.
Test Cases must be executed in the order defined for each resource because the result from one of the scenarios will be input for the next one.
Requests must be addressed to the endpoint provided for certification, specifically they must be addressed to the URI defined by the concatenation of the {apiRoot} and the specific resource, where the {apiRoot} is defined as {serverRoot}/catalogManagement/v2, where {serverRoot} defines the certification endpoint.

[bookmark: _Toc483602566][bookmark: _Toc497300316]ResourceCandidate resource TEST CASES

	Test Case ID
	Title
	Description

	TC_ResourceCandidate_POST_N1
	Create Resource Candidate
	Pre-requisite: it should be ResourceSpecification exist as result of TC_ResourceSpecification_POST_N1
1. Send POST message to {apiRoot}/resourceCandidate/ with all mandatory parameters and supported optional parameters to create a new ResourceCandidate such as:
	{
 “name”: “<anytext>”,
 “description”: “<anytext>”,
 “lifecycleStatus”: “Active”,
 "@type": "ResourceCandidate",
 “validFor”:
 {
 “startDateTime”: ”<any value with correct datetime format>”,
 “endDateTime”: “<any value with correct datetime format>”
 },
 "resourceSpecification": {
 "id": “<any valid id value which identifying an existing resource specification>”,
 "href": “<any valid href value which addressing an existing resource specification>”,
 "name": “<anytext>”
 }}

2. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_ResourceCandidate_POST_N2
	Create Resource Candidate with missing mandatory parameter
	Pre-requisite: None
1. Send POST message to {apiRoot}/resourceCandidate/ without mandatory parameters like name to create a new ResourceCandidate
2. Verify that server rejects the request by sending the proper response code/error message

	TC_ResourceCandidate_GET_N3
	Search for Resource Candidates- no filtering
	Pre-requisite: create multiple ResourceCandidate as per TC_ResourceCandidate_POST_N1
1. Send a GET message to /{apiRoot}/resourceCandidate
2. Verify the response with code 200,
3. Ensure that all created ResourceCandidate items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ResourceCandidate_GET_N4
	Search for Resource Candidates with filtering
	Pre-requisite: create multiple ResourceCandidate as per TC_ResourceCandidate_POST_N1
1. Send a GET message to /{apiRoot}/resourceCandidate with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name
2. Verify the response with code 200,
3. Ensure that all created ResourceCandidate items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ResourceCandidate_GET_N5
	Search for Resource Candidates with filtering and selected attributes
	1. Pre-requisite: create multiple ResourceCandidate as per TC_ResourceCandidate_POST_N1
2. Send a GET message to /{apiRoot}/resourceCandidate with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
3. Verify the response with code 200,
4. Ensure that all created ResourceCandidate items which match the filter criteria are returned in the body of response
5. Ensure that the response message includes only selected parameters
6. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_ResourceCandidate_DELETE_N1
	Delete an existing Resource Candidate
	Pre-requisite: create ResourceCandidate as per TC_ResourceCandidate_POST_N1
1. Send a DELETE message to /{apiRoot}/resourceCandidate/{ID} in which ID is identifier of existing ResourceCandidate item
2. Verify the response with code 204,
3. Ensure that the ResourceCandidate item is deleted from the list of available resource candidates

	TC_ResourceCandidate_PATCH_N1
	update an existing Resource Candidate with only patchable parameters
	Pre-requisite: create ResourceCandidate as per TC_ResourceCandidate_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/resourceCandidate/{ID} in which ID is identifier of existing ResourceCandidate item. Include all patchable fields to update the ResourceCandidate
2. Verify the response with code 200,
3. Verify that response body includes all modified fields

	TC_ResourceCandidate_PATCH_N2
	update an existing Resource Candidate with non-patchable parameters
	Pre-requisite: create ResourceCandidate as per TC_ResourceCandidate_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/resourceCandidate/{ID} in which ID is identifier of existing ResourceCandidate item. Include non-patchable fields like lastUpdate, @type, href and id with different value(s) than existing one(s) to update the ResourceCandidate
2. Verify the response with error code 400,

[bookmark: _Toc497300317]ResourceSpecification resource TEST CASES

	Test Case ID
	Title
	Description

	TC_ResourceSpecification_POST_N1
	Create Resource Specification
	Pre-requisite: None
3. Send POST message to {apiRoot}/resourceSpecification/with all mandatory parameters and supported optional parameters to create a new ResourceSpecification such as:
	[bookmark: _Hlk490586082]{
 “name”: “<anytext>”,
 “description”: “<anytext>”,
 “lifecycleStatus”: “Active”,
 "@type": "ResourceFunction",
 “validFor”:
 {
 “startDateTime”: ”<any value with correct datetime format>”,
 “endDateTime”: “<any value with correct datetime format>”
 },
 "resourceSpecCharacteristic": [
 {
 "name": “<anytext>”,
 "description": “<anytext>”,
 "valueType": “<anytext>”,
 "validFor": {
 "startDateTime": ”<any value with correct datetime format>”,
 "endDateTime": ”<any value with correct datetime format>”
 },
 "@type": "ResourceSpecCharacteristic",
 "@schemaLocation": ”<any text in url format>”,
 "minCardinality": 0,
 "maxCardinality": 1,
 "resourceSpecCharRelationship": [
],
 "resourceSpecCharacteristicValue":[
 {
 "value": “<anytext>”,
 "validFor": {
"startDateTime": ”<any value with correct datetime format>”, "endDateTime": ”<any value with correct datetime format>”
 }
 }
]
}
],
 "resourceSpecRelationship": [],
 "feature": []
}

4. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_ResourceSpecification_POST_N2
	Create Resource Specification with missing mandatory parameter
	Pre-requisite: None
1. Send POST message to {apiRoot}/resourceSpecification/without mandatory parameters like name and type to create a new ResourceSpecification
2. Verify that server rejects the request by sending the proper response code/error message

	TC_ResourceSpecification_GET_N3
	Search for Resource Specifications- no filtering
	Pre-requisite: create multiple ResourceSpecification items as per TC_ResourceSpecification_POST_N1
1. Send a GET message to /{apiRoot}/resourceSpecification
2. Verify the response with code 200,
3. Ensure that all created ResourceSpecification items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ResourceSpecification_GET_N4
	Search for Resource Specifications with filtering
	Pre-requisite: create multiple ResourceSpecification as per TC_ResourceSpecification_POST_N1
1. Send a GET message to /{apiRoot}/resourceSpecification with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name
2. Verify the response with code 200,
3. Ensure that all created ResourceSpecification items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ResourceSpecification_GET_N5
	Search for Resource Specifications with filtering and selected attributes
	Pre-requisite: create multiple ResourceSpecification items as per TC_ResourceSpecification_POST_N1
1. Send a GET message to /{apiRoot}/resourceSpecification with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
2. Verify the response with code 200,
3. Ensure that all created ResourceSpecification items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes only selected parameters
5. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_ResourceSpecification_DELETE_N1
	Delete an existing Resource Specification
	Pre-requisite: create ResourceSpecification as per TC_ResourceSpecification_POST_N1
1. Send a DELETE message to /{apiRoot}/resourceSpecification/{ID} in which ID is identifier of existing ResourceSpecification item
2. Verify the response with code 204,
3. Ensure that the ResourceSpecification item is deleted from the list of available resource specifications

	TC_ResourceSpecification_PATCH_N1
	update an existing Resource Specification with only patchable parameters
	Pre-requisite: create ResourceSpecification as per TC_ResourceSpecification_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/resourceSpecification/{ID} in which ID is identifier of existing ResourceSpecification item. Include all patchable fields to update the ResourceSpecification
2. Verify the response with code 200,
3. Verify that response body includes all modified fields

	TC_ResourceSpecification_PATCH_N2
	update an existing Resource Specification with non-patchable parameters
	Pre-requisite: create ResourceSpecification as per TC_ResourceSpecification_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/resourceSpecification/{ID} in which ID is identifier of existing ResourceSpecification item. Include non-patchable fields like lastUpdate, @type, href and id with different value(s) than existing one(s) to update the ResourceSpecification.
2. Verify the response with error code 400,

[bookmark: _Toc497300318]LogicalResourceSpec resource TEST CASES

	Test Case ID
	Title
	Description

	TC_LogicalResourceSpec_POST_N1
	Create Logical Resource Specification
	Pre-requisite: None
1. Send POST message to {apiRoot}/logicalResourceSpec/with all mandatory parameters and supported optional parameters to create a new LogicalResourceSpec such as:
	{
 “name”: “<anytext>”,
 “description”: “<anytext>”,
 “lifecycleStatus”: “Active”,
 "@type": "ResourceFunction",
 “validFor”:
 {
 “startDateTime”: ”<any value with correct datetime format>”,
 “endDateTime”: “<any value with correct datetime format>”
 },
 "resourceSpecCharacteristic": [
 {
 "name": “<anytext>”,
 "description": “<anytext>”,
 "valueType": “<anytext>”,
 "validFor": {
 "startDateTime": ”<any value with correct datetime format>”,
 "endDateTime": ”<any value with correct datetime format>”
 },
 "@type": "ResourceSpecCharacteristic",
 "@schemaLocation": ”<any text in url format>”,
 "minCardinality": 0,
 "maxCardinality": 1,
 "resourceSpecCharRelationship": [
],
 "resourceSpecCharacteristicValue":[
 {
 "value": “<anytext>”,
 "validFor": {
"startDateTime": ”<any value with correct datetime format>”, "endDateTime": ”<any value with correct datetime format>”
 }
 }
]
}
],
 "resourceSpecRelationship": [],
 "feature": []
}

2. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_LogicalResourceSpec_POST_N2
	Create Logical Resource Specification with missing mandatory parameter
	Pre-requisite: None
1. Send POST message to {apiRoot}/logicalResourceSpec/without mandatory parameters like name to create a new LogicalResourceSpec
2. Verify that server rejects the request by sending the proper response code/error message

	TC_LogicalResourceSpec_GET_N3
	Search for Logical Resource Specifications- no filtering
	Pre-requisite: create multiple LogicalResourceSpec items as per TC_LogicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/logicalResourceSpec
2. Verify the response with code 200,
3. Ensure that all created LogicalResourceSpec items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_LogicalResourceSpec_GET_N4
	Search for Logical Resource Specifications with filtering
	Pre-requisite: create multiple LogicalResourceSpec as per TC_LogicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/logicalResourceSpec with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name and @type
2. Verify the response with code 200,
3. Ensure that all created LogicalResourceSpec items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_LogicalResourceSpec_GET_N5
	Search for Logical Resource Specifications with filtering and selected attributes
	Pre-requisite: create multiple LogicalResourceSpec items as per TC_LogicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/logicalResourceSpec with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
2. Verify the response with code 200,
3. Ensure that all created LogicalResourceSpec items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes only selected parameters
5. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_LogicalResourceSpec_DELETE_N1
	Delete an existing Logical Resource Specification
	Pre-requisite: create LogicalResourceSpec as per TC_LogicalResourceSpec_POST_N1
1. Send a DELETE message to /{apiRoot}/logicalResourceSpec/{ID} in which ID is identifier of existing LogicalResourceSpec item
2. Verify the response with code 204,
3. Ensure that the LogicalResourceSpec item is deleted from the list of available logical resource specifications

	TC_LogicalResourceSpec_PATCH_N1
	update an existing Logical Resource Specification with only patchable parameters
	Pre-requisite: create LogicalResourceSpec as per TC_LogicalResourceSpec_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/logicalResourceSpec/{ID} in which ID is identifier of existing LogicalResourceSpec item. Include all patchable fields to update the LogicalResourceSpec
2. Verify the response with code 200,
3. Verify that response body includes all modified fields

	TC_LogicalResourceSpec_PATCH_N2
	update an existing Logical Resource Specification with non-patchable parameters
	Pre-requisite: create LogicalResourceSpec as per TC_LogicalResourceSpec_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/logicalResourceSpec/{ID} in which ID is identifier of existing LogicalResourceSpec item. Include non-patchable fields like lastUpdate, @type, href and id with different value(s) than existing one(s) to update the LogicalResourceSpec
2. Verify the response with error code 400,

[bookmark: _Toc497300319]PhysicalResourceSpec resource TEST CASES

	Test Case ID
	Title
	Description

	TC_PhysicalResourceSpec_POST_N1
	Create Physical Resource Specification
	Pre-requisite: None
1. Send POST message to {apiRoot}/physicalResourceSpec/with all mandatory parameters and supported optional parameters to create a new PhysicalResourceSpec such as:
	{
 “name”: “<anytext>”,
 “description”: “<anytext>”,
 “lifecycleStatus”: “Active”,
 "@type": "PhysicalDeviceSpec",
 "@schemaLocation": “<anytext>”,
 "@baseType":“PhysicalResourceSpec",
 “validFor”:
 {
 “startDateTime”: ”<any value with correct datetime format>”,
 “endDateTime”: “<any value with correct datetime format>”
 },
 "isBundle": false,
 "category": “<anytext>”,
 "model": “<anytext>”,
 "part": “<anytext>”,
 "sku": "“<anytext>”,
 "vendor": “<anytext>”,
 "resourceSpecCharacteristic": [
 {
 "name": “<anytext>”,
 "description": “<anytext>”,
 "valueType": “<anytext>”,
 "validFor": {
 "startDateTime": ”<any value with correct datetime format>”,
 "endDateTime": ”<any value with correct datetime format>”
 },
 "@type": "ResourceSpecCharacteristic",
 "@schemaLocation": ”<any text in url format>”,
 "minCardinality": 0,
 "maxCardinality": 1,
 "resourceSpecCharRelationship": [
],
 "resourceSpecCharacteristicValue":[
 {
 "value": “<anytext>”,
 "validFor": {
"startDateTime": ”<any value with correct datetime format>”, "endDateTime": ”<any value with correct datetime format>”
 }
 }
]
}
],
 "resourceSpecRelationship": [],
 "feature": []
}

2. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_PhysicalResourceSpec_POST_N2
	Create Physical Resource Specification with missing mandatory parameter
	Pre-requisite: None
1. Send POST message to {apiRoot}/physicalResourceSpec/without mandatory parameters like name to create a new PhysicalResourceSpec
2. Verify that server rejects the request by sending the proper response code/error message

	TC_PhysicalResourceSpec_GET_N3
	Search for Physical Resource Specifications- no filtering
	Pre-requisite: create multiple PhysicalResourceSpec items as per TC_PhysicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/physicalResourceSpec
2. Verify the response with code 200,
3. Ensure that all created PhysicalResourceSpec items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_PhysicalResourceSpec_GET_N4
	Search for Physical Resource Specifications with filtering
	Pre-requisite: create multiple PhysicalResourceSpec as per TC_PhysicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/physicalResourceSpec with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name
2. Verify the response with code 200,
3. Ensure that all created PhysicalResourceSpec items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_PhysicalResourceSpec_GET_N5
	Search for Physical Resource Specifications with filtering and selected attributes
	Pre-requisite: create multiple PhysicalResourceSpec as per TC_PhysicalResourceSpec_POST_N1
1. Send a GET message to /{apiRoot}/physicalResourceSpec with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
2. Verify the response with code 200,
3. Ensure that all created PhysicalResourceSpec items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes only selected parameters
5. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_PhysicalResourceSpec_DELETE_N1
	Delete an existing Physical Resource Specification
	Pre-requisite: create PhysicalResourceSpec as per TC_PhysicalResourceSpec_POST_N1
1. Send a DELETE message to /{apiRoot}/physicalResourceSpec/{ID} in which ID is identifier of existing PhysicalResourceSpec item
2. Verify the response with code 204,
3. Ensure that the PhysicalResourceSpec item is deleted from the list of available physical resource specifications

	TC_PhysicalResourceSpec_PATCH_N1
	update an existing Physical Resource Specification with only patchable parameters
	Pre-requisite: create PhysicalResourceSpec as per TC_PhysicalResourceSpec_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/physicalResourceSpec/{ID} in which ID is identifier of existing PhysicalResourceSpec item. Include all patchable fields to update the PhysicalResourceSpec
2. Verify the response with code 200,
3. Verify that response body includes all modified fields

	TC_PhysicalResourceSpec_PATCH_N2
	update an existing Physical Resource Specification with non-patchable parameters
	Pre-requisite: create PhysicalResourceSpec as per TC_PhysicalResourceSpec_POST_N1
1. Send a PATCH message using json/merge to /{apiRoot}/physicalResourceSpec/{ID} in which ID is identifier of existing PhysicalResourceSpec item. Include non-patchable fields like lastUpdate, @type, href and id with different value(s) than existing one(s) to update the PhysicalResourceSpec
2. Verify the response with error code 400,

[bookmark: _Toc497300320]ImportJob resource TEST CASES

	Test Case ID
	Title
	Description

	TC_ImportJob_POST_N1
	Create an Import Job
	Pre-requisite: None
1. Send POST message to {apiRoot}/importJob/with all mandatory parameters and supported optional parameters to create a new ImportJob such as:
	{
 "url": “http://catalogMangement/projects/myProject/”,
“path”: “c:/resourceCatalog/projects/myProject.zip”
}

2. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_ImportJob_POST_N2
	Create Import Job with missing mandatory parameter
	Pre-requisite: None
1. Send POST message to {apiRoot}/importJob/without mandatory parameters like url to create a new ImportJob
2. Verify that server rejects the request by sending the proper response code/error message

	TC_ImportJob_GET_N3
	Search for Import Jobs- no filtering
	Pre-requisite: create multiple ImportJob items as per TC_ImportJob_POST_N1
1. Send a GET message to /{apiRoot}/importJob
2. Verify the response with code 200,
3. Ensure that all created ImportJob items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ImportJob_GET_N4
	Search for Import Jobs with filtering
	Pre-requisite: create multiple ImportJob as per TC_ImportJob_POST_N1
1. Send a GET message to /{apiRoot}/importJob with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name
2. Verify the response with code 200,
3. Ensure that all created ImportJob items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ImportJob_GET_N5
	Search for Import Jobs with filtering and selected attributes
	Pre-requisite: create multiple ImportJob as per TC_ImportJob_POST_N1
1. Send a GET message to /{apiRoot}/importJob with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
2. Verify the response with code 200,
3. Ensure that all created ImportJob items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes only selected parameters
5. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_ImportJob_DELETE_N1
	Delete an existing Import Job
	Pre-requisite: create ImportJob as per TC_ImportJob_POST_N1
1. Send a DELETE message to /{apiRoot}/importJob/{ID} in which ID is identifier of existing ImportJob item
2. Verify the response with code 204,
3. Ensure that the ImportJob item is deleted from the list of available import jobs

[bookmark: _Toc497300321]ExportJob resource TEST CASES

	Test Case ID
	Title
	Description

	TC_ExportJob_POST_N1
	Create an Export Job
	Pre-requisite: (Resource) Catalog should be populated with (resource) catalog entities like ResourceSpecification, ResourceCandidate, and so on.
1. Send POST message to {apiRoot}/exportJob/with all mandatory parameters and supported optional parameters to create a new ExportJob such as:
	{
 "url": “http://hostname:port/catalogMangement/resourceCandidate/”,
“path”: “c:/resourceCatalog/projects/RC/”
}

2. Verify the response with code 201, location header set to url of the created resource and body including full representation of the created resource

	TC_ExportJob_POST_N2
	Create Export Job with missing mandatory parameter
	Pre-requisite: Pre-requisite: (Resource) Catalog should be populated with (resource) catalog entities like ResourceSpecification, ResourceCandidate, and so on.
1. Send POST message to {apiRoot}/exportJob/without mandatory parameters like url to create a new ExportJob
2. Verify that server rejects the request by sending the proper response code/error message

	TC_ExportJob_GET_N3
	Search for Export Jobs- no filtering
	Pre-requisite: create multiple ExportJob items as per TC_ExportJob_POST_N1
1. Send a GET message to /{apiRoot}/exportJob
2. Verify the response with code 200,
3. Ensure that all created ExportJob items are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ExportJob_GET_N4
	Search for Export Jobs with filtering
	Pre-requisite: create multiple ExportJob as per TC_ExportJob_POST_N1
1. Send a GET message to /{apiRoot}/exportJob with filtering of mandatory parametrs as defined in API GET Filtering Operation Conformance like name
2. Verify the response with code 200,
3. Ensure that all created ExportJob items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes all mandatory parameters and specified optional parameters
5. Ensure that the body of the response for each resource matches the values in the original POST request

	TC_ExportJob_GET_N5
	Search for Export Jobs with filtering and selected attributes
	Pre-requisite: create multiple ExportJob as per TC_ExportJob_POST_N1
1. Send a GET message to /{apiRoot}/exportJob with filtering of mandatory parametrs like name and selection attibutes as defined in API GET Filtering Operation Conformance
2. Verify the response with code 200,
3. Ensure that all created ExportJob items which match the filter criteria are returned in the body of response
4. Ensure that the response message includes only selected parameters
5. Ensure that the body of the response for each resource and selected fields matches the values in the original POST request

	TC_ExportJob_DELETE_N1
	Delete an existing Export Job
	Pre-requisite: create ExportJob as per TC_ExportJob_POST_N1
1. Send a DELETE message to /{apiRoot}/exportJob/{ID} in which ID is identifier of existing ExportJob item
2. Verify the response with code 204,
3. Ensure that the ExportJob item is deleted from the list of available export jobs

[bookmark: _Toc203490686][bookmark: _Toc225613461][bookmark: _Toc225603250][bookmark: _Toc235288526][bookmark: _Toc497300322]Release History

	Release Number
	Date
	Release led by:
	Description

	Release 1.0
	8/15/2017
	Kamal Maghsoudlou
Ericsson
kamal.maghsoudlou@ericsson.com
	First Release of Draft Version of the Document.

[bookmark: _Toc396927082][bookmark: _Toc404178567][bookmark: _Toc490441556][bookmark: _Toc497300323]Contributors to Document

	· Kamal Maghsoudlou
	Ericsson

	· Mariano Belaunde
	Orange

	· Pierre Gauthier
	TM Forum

TM Forum 2017. All Rights Reserved.
 	 © TM Forum 2017. All Rights Reserved. 	Page 2
image1.jpeg

image2.jpeg
tmferum

inform innovate accelerate optimize

